1. s= а+b+c : 4r= периметр : 2d= 12:12=1
2. R= 2s : (a+b+c) =108: (9+12+15)=3
s=ab : 2=54 c(по теореме пифагора)= 15
3. треугольник АВД равносторнний
R=длина окружности : 2пи=
: 2пи=
пи
сторна треугольника = 2*радиус*
= 6: пи
Периметр= 6пи*4= 24пи
( не очень уверена над 3 задачей)
короче, вычисляем среднее арифмитическое
(18,7 + 20,1+21,9+24,3+24,1+21,9+21,7+23,7) :8= 22,05
Образующая и высота создают прямоугольный треугольник, в котором образующая - гипотенуза, высота - катет и второй катет - радиус основания. По т. Пифагора найдём его: R²= 36 - 9 = 27, R = 3√3
S бок. = πRl = π*3√3*6= 18π√3
<span>смотрите, в этом 4 угольнике диагонали взаимно перпендикулярны, и одна из них - диаметр окружности, то есть 6. Площадь такого 4угольника равна половине произведения диагоналей (докажите, это просто). Значит расстояние между точками касания 12*2/6 = 4. А половина - 2. Значит sin(Ф) =2/3. Ф - половина центрального угла хорды, соединяющей точки касания. ОЧЕНЬ ЛЕГКО увидеть, что Ф - угол при большом основании трапеции (просто стороны углов перпендикулярны). А дальше, вычисляете боковую сторону (диаметр делить на sin(Ф)), она равна средней линии (почему? - это следует из свойства описанного 4угольника:)), умножаете на диаметр, задача решена. Собрав все это получаем (2*r)^2/sin(Ф) = 54.</span>
<span>
</span>
<span>Это я перенес из сообщения, некоторые места я не объясняю, в надежде, что вы сами из объясните, это просто.</span>
Ключевой момент для решения - теорема синусов, которая в "правильной" формулировке утверждает, что хорда окружности равна произведению диаметра окружности на синус вписанного в эту окружность угла, опирающегося на эту хорду. Из этой теоремы сразу следует, что угол AEB равен 45°, а так как по условию угол ABE равен 45°, треугольник BEA - прямоугольный равнобедренный (угол A- прямой); AB=AE=√2; BE=2, S_(ABE)=1. Поскольку A - прямой, он опирается на диаметр BE, а тогда и угол BDE - прямой, а ΔBDE - прямоугольный с углами 30° и 60°, катетами ED=1, BD=√3 и гипотенузой 2; S_(BED)=√3/2. Осталось разобраться с ΔBCD. Из разных способов рассуждения выберем, скажем, такой. Четырехугольник BCDE - вписанный⇒ сумма противоположных углов = 180°, а так как ∠BED=60°⇒∠BCD=120°, то есть углы равнобедренного по условию треугольника BCD равны 120°, 30°, 30°. Сейчас спокойно можно было бы обойтись без теоремы косинусов, но так приятно лишний раз вспомнить о ней! Итак, обозначив сторону BC-CD=x, получаем
(√3)^2=x^2+x^2-2x·x·cos 120°; 3=3x^2; x=1. S_(BCD)=1/2 BC·BD·sin 30°=
√3/4. Отсюда площадь всего пятиугольника, составленная из площадей трех треугольников, равна 1+√3/2+√3/4=(4+3√3)/4
Ответ: (4+3√3)/4