Площадь треугольника проще вычислить, чем измерить.
а) Площадь треугольника можно вычислить по полу-произведению основания треугольника 'a' на его высоту 'h':
S = (a*h)/2
б) Если известны все три стороны треугольника a,b,c, то по формуле Герона его площадь вычисляется так:
S= √(p*(p-a)*(p-b)*(p-c)), где 'p' полу-периметр треугольника: p = (a + b + c)/2
Ну а если хочется всё же именно измерить площадь треугольника, то можно разбить его на квадраты единичной площади (нарисовать этот треугольник на листе в клеточку), а потом сложить количество целых квадратов и половину количества неполных квадратов, это и даст приблизительно измеренную площадь треугольника в квадратных единицах.
Для решения этой задачи необходимо воспользоваться знаменитой теоремой ковров (the carpet theorem), согласно которой "Если два ковра одинаковой площади перекрывают друг друга, то, не считая перекрытия, их оставшиеся части имеют равные площади".
Спрашивается, при чём тут ковры к нашему параллелограмму?
Представим, что у нас есть два куска ковра, которые покрывают наш параллелограм полностью: Один кусок - ∆TPL, а остаток - фигура, ограниченная замкнутой ломаной A-T-P-L-R-A. Площадь ∆TPL и сумма площадей ∆ATP и ∆PLR равна. Как это доказать?
Проведём линию, параллельную сторонам параллелограмма, от точки P на сторону TL в условную точку O.
∆TPO=∆TPA по второму признаку - у них общая сторона TP и равные прилегающие углы. Угол ATP углу TPO как внутренние накрест лежащие при параллельных AT и PO при секущей TP. Углы APT и PTO тоже равны по той же причине, но при параллельных AR и TL c секущей TP.
Аналогичным образом ∆RPL=∆OLP. Таким образом, площадь ∆TPL = 1/2 площади параллелограмма.
Теперь возьмёмся за иной ковёр из двух кусков.
Площадь фигуры, ограниченной замкнутой ломаной A-I-S-L-R-A равна площади многоугольника
AISLTA, и тоже равна 1/2 площади параллелограмма. Почему я так решил?
Проведем через точки I и S прямые, параллельные AR и TL (на картинке изобразил зелёным).
Каждая пара получившихся треугольников будет равной по тому же второму признаку равенства треугольников.
∆BSL=∆TLS (общая сторона и примыкающие углы равны как внутренние разносторонние при двух параллельных и секущей), ∆IDS=∆SBI, а ∆AID=∆DIS. А поскольку у нас площади этих фигур являются произведением сумм площадей треугольников (красных или соответственно белых на картинке 2), то и получаем, что эти два куска равны по площади, хоть и не обязательно одинаковы по форме.
Таким образом, мы доказали, что площадь ∆TPL = ∆AIS + ∆STL = половине площади параллелограмма S/2
Наконец, приступаем к поиску неизвестной. У нас есть две фигуры, площадь которых равна, хоть они и принципиально отличаются по форме. Это и есть наши два "ковра" AIS + STL и ∆TPL. Они накладываются друг на друга, образовывая фигуры c неизвестной площадью y и z (на картинке 3 - выделены зелёным).
Итак, у нас есть два варианта - либо используем указанное в начале определение из теоремы ковров, либо выводим это самостоятельно.
В варианте 1 нас не интересуют уже y и z, так как
Х+74+5=13+67
X+79=80
x=80-79=1
В варианте 2 мы просто идём через доказанное ранее равенство площадей фигур и подставляем имеющиеся данные:
∆TPL = z+67+y+13
∆AIS + ∆STL = x+z+74+y+5
x+z+74+y+5=z+67+y+13
x+z-z+y-y=67+13-74-5
x=80-79
x=1
Ответ - площадь оранжевого треугольника равна 1
НА самом деле, задача решается легко в одно действие если увидеть сразу эти "ковры" и не доказывать заново теорему.
Еще есть интересное видео на эту же тематику с похожей задачкой. Индийский акцент немного решет уши даже понимающим английский язык, но очень наглядно видно пояснение теоремы.
Универсальной формулы для расчета площади любого четырёхугольника нет. Формулы зависят от исходных данных для расчета. Проще всего рассчитать площадь прямоугольного четырёхугольника, она равна произведению длин сторон пересекающихся в одной вершине, а для квадрата равна квадрату стороны. Для четырёхугольника с разными внутренними углами его площадь S = d1*d2*SinA, где d1 и d2 - диагонали четырёхугольника, А - угол между диагоналями в градусах. Как водно из этой формулы, для расчета площади требуется знать длины диагоналей, величину ушла и таблица синусов или калькулятор.