1. Треугольник АВС прямоугольный, т.к. ∠АСВ прямой, и равнобедренный т.к. ∠АВС=45°, а сумма углов треугольника равна 180°, то 180°-90°-45°=45°, то есть ∠ВАС тоже 45°. Высота CD, опущенная к основанию АВ делит его пополам (т.к. треугольник АВС равнобедренный), т.е. АD=DB. Треугольник CDB тоже равнобедренный, т.к. углы при основании у него равны ∠DBC=∠DCB=45°, значит CD=DB=8, а следовательно, т.к. AD=DB, то AB=8+8=16/
2. Для начала найдём ВЕ. Так как ∠ВЕС=60° ∠ВСЕ=90°, то ∠СВЕ будет равен 30°. Известно, что катет лежащий против угла 30° равен половине гипотенузы, следовательно ВЕ=2*ЕС=2*7=14. Теперь рассмотрим треугольник АВЕ, он равнобедренный так как у него ∠ВЕА=120° (как смежный с ∠ВЕС 180°-60°=120°), а ∠АВЕ=30°, значит АЕ=ВЕ=14.
3. Треугольник BAD равнобедренный по условию (AB=AD=7) значит высота АС является биссектрисой и медианой, следовательно ВС=СD, отсюда BD=BC+CD=3,5+3,5=7. Оказалось что треугольник BAD - равносторонний, а углы равностороннего треугольника равны 60°. Значит ∠В=60°. Так как АС - высота то ∠С=90°.
Исходим из условия, что вертикальная грань - равнобедренный треугольник. Тогда угол при основании равен (180° - 120°)/2 =30°.
Высота Н этой грани является высотой пирамиды.
Н = (6/2)*tg30° = 3*(1/√3) = √3 дм.
Площадь основания So = a²√3/4 = 36√3/4 = 9√3 дм².
Тогда объём равен: V = (1/3)SoH = (1/3)*9√3*√3 = 9 дм³.
Ні , 2 неможливо адже це сперечае головним здібностям прямих. Але вони можуть бути паралельними і мати безліч спільних точок.
(дуже надіюся що хоч трошки допомогла ❤)
Острый угол ромба=60град. Меньшая диагональ=sqrt(25+25-2*5*5*cos60)=5sqrt3
Высота призмы H=Sбок./P=240/20=12. Площадь сечения=12*5sqrt3=60*sqrt3