BK-3х
AK-х
3х+х=36
4х=36
х=9
9*3=27
Ответ:27 и 9
1)1/2а=(3;-1;1)
-б=(2;4;-2)
1/2а-б=1/2а+(-б)=(5;3;-1)
2)2б=(-4;-8;4)
2б+а=(2;-10;6)
|2б+а|=4+100+36(и все это под корнем)=
140(под корнем)=4•35(под корнем)=2корень из 35
3)cosL=a•b/|a|•|b|
|a|=36+4+4(под корнем)=корень из 44
|b|=4+16+4(под корнем)=корень из 24
А•б=6•(-2)+(-2)•(-4)+2•2=-12+8+5=0
СоsL1=0/корень 44•корень 24=0
L1=90 градусов
L2
A-b=(6-(-2));-2-(-4);2-2)=(8;2;0)
A+b=(6+(-2);(-2)+(-4);;2+2)=(4;-6;4)
CosL2=(a-b)•(a+b)/|a-b|•|a+b|
(A-b)•(a+n)=8•4+2•(-6)+0•4=32-12=20
|a-b|=64+16(под корнем)=корень из 80
|а+б|=16+36+16(под корнем)=32+36(под корнем)=корень из 68
СоsL2=20/80(корень )•69(корень)=5(корень)•5(корень)/5(корень)•2•17(корень)=5(корень):2корень из 17
L2=arccos 5(корень)/2 корень 17
Дано:
прямоугольный треугольник АВС.
Высота из прямого угла ВН
НС=АН+11
ВС/АВ=6/5
Решение:
1. Обозначим отрезок АН за х, тогда НС=х+11
По теореме Пифагора ВС²+АВ²=АС²
Выразим длины катетов через а:
ВС=6*а, АВ=5*а
(6а)² + (5а)² = (2х+11)²
61а²=(2х+11)²
2. Выразим высоту h через треугольник АВН: h²=25a²-x²
и подставим полученное значение в треугольник ВНС:
h²+(x+11)²=36a²
25a²-x² + (x²+22x+121)=36a²
сокращаем выражение и получаем: а²=2х+11
3. Подставляем выражение, полученное во втором действии в выражение, полученное в первом действии:
61(2х+11)=(2х+11)²
61=2х+11
Заметим, что 2х+11=с - гипотенуза треугольника АВС.
Ответ: с=61 см.