Т.к. АО, ВО бисектриссы, то угол А и угол В в треугольнике АОВ =30 градусам, тогда полные углы А и В =60, тогда угол С =180-120=60 градусов
Сначала давайте докажем, что треугольник BCD подобен треугольнику BEA:
Угол В общий;
Угол BEA=BDC=90'
=> треугольник BCD подобен треугольнику BEA по первому признаку подобия треугольников.
-----
Честно, не знаю как дальше, но, возможно, если AB=BC, то BE=BD, что и требовалось доказать
Трудная задачка. Тут надо представлять площади треугольников. Во-первых, площадь трапеции равна сумме площадей треугольников ABK, BKC,CKD и AKD.Площади треугольников ABK и DCK соотносятся как 4:1, угол BKA= углу DKC(вертик.), площадь треугольника равна половине произведения сторон треугольника, образующих угол на его синус, тогда площадь треугольника KCD равна 0,5*4x( 4x - этоKD, x - это BK)*KC*sinA, площадь треугольника AKB равна 0,5*x*AK*sinA, сократив дробь, мы получим AK=KC, пусть это y. Площадь треугольника AKD равна 0,5*y*4x*sinA(синусы смежных углов равны), 2xysinA, мы знаем, что площадь CKD равна 0,5*4x*y*sinA, то есть площади обоих треугольников равны 96. Теперь с теми двумя: площади их будут равны 0,5*x*y*sinA, площади обоих равны по 26. А теперь складываем их площади, получаем площадь трапеции: 26*2+96*2=2(26+96)=244
Sk = Sбок + Sосн = πRL + πR²
Vk = 1/3 ·πR²h
Пусть высота равна h = 4x тогда образующая L = 5x
Радиус из прямоугольного треугольника равен R² = L² - h² = 9x² (R = 3x)
V=1/3 ·πR²h = 1/3 π · 9x² · 4x = 12πx³ = 96π значит x³ = 8 x = 2
Sk = πRL + πR² = π 3 · 2 · 5 · 2 + π (3 · 2 )² = π 96 см²
А треугольник прямоугольный? Если да, то 4,5