Хорошая задача! Ребра наклонены под одним углом, значит вершина проектируется в центр описанной окружности. Находим радиус описанной окружноси.2R=a/sin 150
2R=a/sin 30
R=a
Ребра наклонены под углом в 45 гр., значит высота пирамиды=a (равнобедр. треуг.)
Комментарии Отметить нарушение
24
СПАСИБО
31
Пусть РАВС - данная пирамида, Р-вершина, РО = √13 см - высота,
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
<span>Ответ. 11,25 √23 см².</span>
Что Дайру книгу прево собой принял человек лишь лиш
Треугольник EDF-равнобедренный, угол DEF=34
Решение:
Угол F= (180-34):2=73.
<em>Меньший катет лежит против угла в 30°, а больший против угла в 60°, но тот, что лежит против 30°, равен половине гипотенузы, поэтому, если гипотенуза 2х, то меньший катет х, а их сумма 3х=12,6, откуда х=12,6/3</em>
<em>х=4,2</em>
<em>тогда гипотенуза 4,2*2=</em><em>8,4/см/</em>