1)АВ=АС=12 (по теореме о отрезках касательных к окружности)
2) ОС перпендикулярен к АС ( АС-касательная, а ОС-радиус)
3) рассм. треугольникАСОон прямоугольный т.к ОС перпендикулярен к АС.. АС=12, ОС=9,а АО гепотенуза.. находим по теореме пифагора АО=Квадратный корень из (81+144)=квадратному корню из 225=15.
Решение во вложении, там все написано)
Удачи! ;)
Угол АОС =150°. Смежные с ним углы АОД и СОЕ равны 180° - 150° = 30°.
Медианы треугольника точкой пересечения О делятся в отношении 2:1, начиная от вершины, поэтому АО = 2см, а ОЕ = 1см.
Поэтому же ОД = х , а СО = 2х
Медианы делят треугольник на 6 равновеликих (равных по площади) треугольников, поэтому площадь треугольника АОD
S(AOD) = 1/6 S(ABC) = 12 : 6 = 2(см²)
Площадь треугольника AOD можно вычислить и иначе:
S(AOD) = 0.5 · AO · OD · sin 30° = 0.5 · 2 · x · 0.5 = 0.5x
0.5x = 2 → x = 4(см) - это OD, а ОС = 2х = 8(см)
СD = OD + OC = 4 + 8 = 12(cм)
Ответ: 12см
<span><em>Точка О-середина оси цилиндра. Диаметр основания цилиндра виден из точки О под прямым углом, а расстояние от точки О до точки окружности основания цилиндра равно 2 см.</em><u><em> Вычислите объем цилиндра. </em></u></span>
Объем цилиндра равен произведению площади его основания на высоту.
<em>V=SH</em>
Все нужные измерения найдем с помощью т. Пифагора.
Точка О - вершина прямого угла равнобедренного прямоугольного треугольника АОВ
с катетами АО=ОВ=2 см
АВ - гипотенуза этого треугольника=диаметру основания и по т.Пифагора равна 2√2, следовательно,
<em>радиус</em> основания цилиндра (2√2):2=<em>√2 </em>
СО- половина высоты цилиндра СН и равна радиусу основания, т.к.
ОС - медиана треугольника АОВ и по свойству прямоугольного треугольника равна половине АВ, =>
<em>СО</em>= АС=<em>√2. </em>
Высота цилиндра
СН =СО*2=2√2
V=SH=π(√2)²*2√2=<em>4π√2 см³</em>
S = 1/2 · a · h, где а - сторона, h - высота, к ней проведенная
отсюда a = 2S/h = 2 · 12/6 = 4 (см)