Ответ:
57.
Объяснение:
сторона ромба равна 76+19=95.
Высота образовала прямоугольный треугольник, у которого гипотенуза равна 95. а один из катетов равен 19. Высота ромба равна другому катету этого треугольника.По теореме Пифагора h²=95²-76².
h²=9025-5776=3249;
h=√3249=57.
Скорее надо ставить вопрос так - если угол ACB = 60<span>°, то чему равно A1H/AH = k?
Из треугольников AA1C и BB1C видно, что угол A1AC = угол B1BC = 30</span><span>°;
тогда из треугольника BHA1 следует, что BH = 2*HA1 = 2*k*y;
</span><span>из треугольника AHB1 получается B1H = AH/2 = y/2;
3/2 = BH/B1H = (2*k*y)/(y/2) = 4*k; k = 3/8;
</span>
Отрезки равные, части одинаковые
<span>синусы смежных углов равны. синус внешнего угла при вершине В равен синусу угла В. </span><span>Ответ: 0,4. </span>