Если противолежащий катет равен половине гипотенузы, то угол равен 30°
КУТ С В тр. АВС=90
<CLH=180-(180-45-30)=75
<HCL=180-75-90=15
////////////////////////////////////////////////
Пусть ∠А, ∠В и ∠С - внутренние углы треугольника АВС, а
∠1, ∠2 и ∠3 - внешние углы.
По свойсту смежных углов:
∠1 + ∠А = 180°
∠2 + ∠В = 180°
∠3 + ∠С = 180°
Сложим левые и правые части трех равенств:
∠1 + ∠2 + ∠3 + ∠А + ∠В + ∠С = 540°
∠А + ∠В + ∠С = 180°, так как сумма углов треугольника равна 180°, ⇒
∠1 + ∠2 + ∠3 = 540° - 180°
∠1 + ∠2 + ∠3 = 360°
Вписанные углы ABD и ABC прямые, так как опираются на диаметры.
Из равенства углов следует, что BD и BC совпадают.
Из данных размеров следует, что D лежит между B и С.
Треугольники DAC и BAC имеют общую высоту (AB), их площади относятся как основания.
S(DAC)/S(BAC) =DC/BC =13/20
Центры окружностей - M и N - середины диаметров AD и AC.
MN - средняя линия в треугольнике DAC.
Средняя линия отсекает четверть площади треугольника.
(MAN~DAC, k=1/2, S(MAN)/S(DAC)=k^2=1/4)
S(DMNC)/S(DAC) =3/4
S(DMNC)/S(BAC) =3/4 *13/20 =39/80