Смежный угол острого угла - тупой угол. Следовательно угол2 - тупой угол. Углы 2 и 3 вертикальные, следовательно они тупые углы
1. Рассмотрим треугольник АА1М. Он прямоугольный (по условию). Найдём АМ по теореме Пифагора:
АМ²=АА1²+А1М²
АМ²=3²+4²
АМ²=25
АМ=5
2. Треугольники АА1М и АА1N равны как прямоугольные по двум катетам (А1М=А1N по условию, АА1 - общая). Тогда АМ=AN=5.
3. Рассмотрим треугольники С1А1В1 и МАN. Они подобны по двум сторонам и общему углу С1А1В1 - А1M:A1C1=A1N:A1B1=1:2. Тогда MN=½C1B1=8:2=4.
P AMN=AM+AN+MN=5+5+4=14
Ответ: 14.
Дано: МАВС - пирамида, АВ=ВС=8, <BAC=<BCA=30°, <MCO=<MAO=<MBO=60°
найти :V
основание - равнобедренный ΔАВС, углы при основании 30°, => угол при вершине равнобедренного треугольника 120°
все боковые ребра образуют с плоскостью основания пирамиды углы 60°, => высота пирамиды проектируется в центр описанной около треугольника окружности. (т.к. угол при вершине тупой, то центр окружности вне треугольника)
радиус описанной около треугольника окружности вычисляется по формуле:
прямоугольный треугольник:
катет ОС=R=8 - радиус окружности
катет МО=Н - высота пирамиды, найти
угол между боковым ребром пирамиды и плоскостью основания пирамиды 60°
MO=8√3. Н=8√3