1) По теореме Пифагора находим катеты АВ = ВС = х
АВ² + ВС² = АС²
х² + х² = 28²
2х² = 784
х² = 784 : 2
х² = 392
х = √392
Катет АВ = √392
2) Расстояние от точки В до АС это перпендикуляр ВК к стороне АС (ВК является и высотой и медианой для ΔАВС, т.к он равнобедренный)
Получился прямоугольный ΔАВК, у него гипотенуза АВ = √392 ;
катет АК = АС : 2 = 28 : 2 = 14
По теореме Пифагора находим искомый катет ВК
АВ² = ВК² + АК²
ВК² = АВ² - АК²
ВК² = 392 - 196
ВК² = 196
ВК = √196 = 14
Ответ: ВК = 14
<u>2 способ </u>
Так как Δ АВС прямоугольный и равнобедренный, то углы его <А = <С = 45° , а высота ВК - расстояние от точки В до АС это перпендикуляр ВК к стороне АС (ВК является и высотой и медианой)
АК = АС : 2 = 28 :2 = 14
ΔАВК тоже прямоугольный и равнобедренный, то углы его <А = <АВК = 45° , значит, АК = ВК = 14
Диагональ основания BD = 20, половина (то есть АО = 10).
Отсюда находим искомую высоту:
SO = √(26² - 10²) = √(676 - 100) = √576 = 24.
Сторона основания а = 20*(√2/2) = 10√2.
Площадь основания So = a² = 200.
Объём пирамиды V = (1/3)SoH = (1/3)*200*24 = 1600 куб.ед.
По теореме Пифагора: a^2 = b^2 +c^2
a^2 = 8^2 + 15^2 = 64 + 225 = 289
a = кв корень из 289 = 17
Угол между боковой гранью и основанием пирамиды - двугранный угол, измеряемый линейным углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. В нашем случае это угол между высотой грани и плоскостью основания. В данной пирамиде ее высота h = 0,8*а, где а - высота боковой грани (апофема) пирамиды. Синус искомого угла равен отношению высоты пирамиды (катет, противоположный искомому углу) к высоте грани (гипотенуза). То есть Sinα = h/a = 0,8a/a = 0,8. Тогда
Cosα = √(1-0,8²)=0,6.
CМ = x + 0.5y
CN = y + x
MN = (x+ 0.5y) - (y + x )