Дано: паралелограмм-ABCD
AB=CD=8
BC=AD=10
(левый нижний угол А)
угол D = 60
найти BD
Решение
угол С = 180 - D = 180- 60 = 120
угол ODC = 30 тк BD делит угол пополам
угол OCD = 60 nr CA делит угол напопалам
угол DOC = 90 тк угол DOC = 180 - ODC - ODC = 180 -30 - 60 = 90
треугольник OCD прямой => OC = CD : 2
CD = 8
OC=8:2
OC=4
AC=AO+OC=2OC=2*4=8
V=Sос*AA1
AB=4,AA1=√27
V=6*1/2*AB²*sin60*AA1=3*16*√3/2*√27=3*8*9=3*72=215
Докажем, что точки В, С, В1, С1 лежат на одной окружности.
Опишем окружность вокруг треугольника ВВ1С.
Рассмотрим угол ВС1С:
угол опирается на диаметр окружности и при этом является прямым, тк СС1 - высота ⇒ вершина угла - В1 - также лежит на окружности
Углы ВВ1С1 и ВСС1 опираются на одну и ту же дугу окружности ⇒ они равны.
ч.т.д.
...............................
Высота в 2 раза меньше образующей, значит, угол между радиусом и образующей в прямоугольном треугольнике (который образован высотой, образующей и радиусом основания) равен 30 градусам.
Высота h = tg30 * R = 10/√3
Образующая l = 20/√3
V = πR²*h/3 = 1000π / 3√3
Sполн = πR²+πRl = 100π+200π/√3 = π(100√3+200)/√3