Высота, проведённая к основанию трапеции, делит трапецию на квадрат ( по условию) и ПРЯМОУГОЛЬНЫЙ треугольник, острый угол которго равен 45' градусов. Этот прямоугольный треугольник является равнобедренным, т.к. по теореме о сумме уголов треугольника <1+<2+<3=180'. <1=<2=45', а <3=90'. В равнобедренном треугольнике боковые стороны равны. В данном случае - это катеты. Обратимся ко второй фигуре - квадрату. Известно, что его площадь - 36 кв. см. Найдём сторону квадрата: а= 36:6, а=6 см. Найдём площадь треугольника: S=1/2ab, т.к. в данном треугольнике боковые стороны равны, то S=1/2aа, S=18 кв. см. Теперь найдём сумму площади квадрата и треугольника, получим сумму всей фигуры, в данном случае - трапеции S= 36+18=54 кв. см
(Х+84)+х=90
2х=6
Х=3(меньший)
3+84=87 (больший)
Точка D проецируется в центр описанной окружности, так как она равноудалена от вершин треугольника. В правильном треугольнике центры описанной и вписанной окружности совпадают и лежат на пересечении медиан треугольника, то есть делят медиану (высоту, биссектрису) в отношении 2:1, считая от вершины. Причем (1/3) медианы - это радиус вписанной окружности, а (2/3)медианы - радиус описанной окружности. В нашем случае (1/3) = 3 см. Тогда (2/3) = 6см. Из прямоугольного треугольника, образованного расстояниями от точки D до плоскости треугольника и радиусом описанной окружности (катеты) и расстоянием от точки D до вершин треугольника (гипотенуза) найдем искомое расстояние:
d = √(4²+6²)=√52 = 2√13см. Это ответ.
стаеш в одну из вершин и отмериваеш транпортиром 60 а далее все стороны переносиш симетрично
Прямоугольные треугольники АВС и DBC равны по катету и гипотенузе, так как АС=BD (дано), а ВС - общий катет. Следовательно, вторые катеты также равны.
АВ=CD, что и требовалось доказать.