<span>Задача по теме об отрезках касательных из одной точки. </span>
<span><em><u>Отрезки касательных</u>, проведенных к окружности и<u>з одной точки</u>, от общей точки до точек касания <u>равны друг другу</u></em><u>. </u></span>
<u />
<span>Примем <em>ТN</em>=<em>x.</em> </span>
<span>Тогда NS=TN=x, </span>
SQ=QN-SN=10-x
QR=QS=10-x
<span>MR=MQ-QR=24-(10-x) </span>
<span>MT=MR=24-(10-x)=<em>14+x </em></span>
<span> МN=MT+TN =></span>
20=14+x+х
2х=6
<em>х</em>=<em>3</em> =>
<span><em>TN</em>=<em>3</em> (ед. длины)</span>
∠3 + ∠6 = 188°, эти углы - накрест лежащие при пересечении параллельных прямых m и n секущей с, значит они равны:
∠3 = ∠6 = 188°/2 = 94°
∠8 = ∠3 = 94°
∠2 = ∠6 = 94° как соответственные углы
∠5 = 180° - ∠3 = 180° - 94° = 86° так как эти углы - внутренние односторонние при пересечении параллельных прямых m и n секущей с.
∠4 = ∠5 = 86° как накрест лежащие.
∠1 = ∠5 = 86°
∠7 = ∠4 = 86° как соответственные
Ответ: ∠1 = ∠4 = ∠5 = ∠7 = 86°,
∠2 = ∠3 = ∠6 = ∠8 = 94°
Высота конуса перпендикулярна диаметру основания, который является основанием треугольника -осевого сечения. Высота делит осевое сечение на два равных прямоугольных треугольника, в которых один из катетов равен 4V3. Угол при вершине также делится пополам: 120:2= 60 град. Тогда два других угла осевого сечения равны по 30 град. В прямоугольном треуг. против угла в 30 град лежит катет, равный половине гипотенузы, которая является стороной осевого сечения и равна 8V3. Теперь из любого прямоугольного треугольника найдем радиус основания: R^2:=(8V3)^2- (4v3)^2=64*3-16*3=12, R=2V3. Sосн= ПR^2=12П см кв.
Треугольники САК и ВАN подобны по двум углам...
а треугольник КАN окажется равнобедренным)))
АК = AN
осталось записать пропорцию для подобных треугольников:
CA / AB = AK / NB = CK / AN
AK*AN = AN^2 = 1*4
AN = 2
Угол BOC=180-50=130
Угол BCO=(180-130)/2=25°