В любом треугольнике сумма двух сторон треугольника всегда больше третьей стороны, если основание - 25, то 10+10<25, это противоречит правилу, => основание равно 10.
Проверим: 25+25>10, 25+10>25
Ответ: основание равно 10 см
Одна сторона основания по условию равна 4 см
Другую найдем из формулы площади основания:
S=a·4=24
a=24:4=6 см
Высоту найдем из формулы объема , разделив его на площадь основания
V=S·h
h=V:S
h=168:24=7 см
Площадь боковой поверхности прямоугольного параллелепипеда равна произведению высоты на периметр его основания
S бок=7·2·(4+6)=140 см ²
Площадь всей поверхности равна сумме площадей двух оснований и площади боковой поверхности:
S общая 2·24+140 =188 см²
<em>ВС1</em> и <em>А1С1</em> - <em><u>диагонали </u></em>граней куба. Они образуют угол <em>А1С1В. </em>
Соединив вершины куба <em>В</em> и <em>А1</em> отрезком. <em>ВА1</em>, получим треугольник со сторонами, которые являются диагоналями равных квадратов и потому равны.
Треугольник <em>ВА1С1</em> - <u>равносторонний</u>.
Все его углы равны 60°.
Следовательно, у<em>гол между прямыми ВС1 </em>и<em> А1С1 равен </em>60°.<em> </em>
Найдем среднюю линию трапеции c=(a+b)/2=(10+26)/2=18
Если опустить из меньшего основания высоты то по бокам трапеции образуются два прямоугольных треугольника. Рассмотрим один из них и найдем высоту по теореме пифагора
где c=17 a=8
b^2=17^2-8^2=289-64=225
b=15
Ответ:средняя линия-18 см, высота-15 см
Ответ:
..............................