Проведенная ДМ это секущая двух параллельных сторон МN и ДС. т.к. по условию угол АДС=72град разделен биссектрисой ДМ на два равных угла NДМ и МДС=36град. тогда угол ДМN будет = 36град. как внутренние накрест лежащие углы с углом МДС., значит треугольник ДNМ получится равнобедренным, т.к. углы ДМN и MДN при его основании =36град. Сумма всех углов треугольника = 180 град. Найдем теперь угол ДNМ=180-(ДМN+МДN)=180-(36+36)=180-72=108град.
Ответ:36гр.36гр. и 108град.
Есть циркуль и линейка.
1) Построить окружность любого радиуса R. Этот радиус ещё пригодится, поэтому пусть он останется на циркуле - менять его нельзя.
Через центр окружности в любом направлении провести диаметр AB.
2) Из точки А вниз и из точки В вверх поставить циркулем засечки на окружности - точки M и N. AM=BN=R
3) Через точки A,M,N провести прямые AM и AN
4) Из точки А на прямой AN поставить циркулем засечку - точку К. Из точки К сделать циркулем ещё одну засечку на окружности - точку С. AK=KC=R
5) Через точки А и С провести прямую AC.
Угол между прямыми AC и AM равен 75°
Пояснение к построению
2) Когда из точки А на окружности делается засечка, то получается равносторонний треугольник ΔAOM со сторонами, равными R. Углы равностороннего треугольника равны по 60° ⇒
∠MAO = 60°. Аналогично ∠OBN = 60°
ΔANB вписан в окружность по диаметру ⇒ ΔANB - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90° ⇒
∠NAB = 90°-∠ABN = 90°-60° = 30°
4) Когда из точки А делается засечка К, а затем из точки К засечка С, то получается ромб AKCO со сторонами, равными радиусу R. Диагонали ромба делят углы ромба пополам ⇒
∠CAO = ∠CAK = ∠NAB/2 = 30°/2 = 15°
5) ∠CAM = ∠CAO + ∠MAO = 15° + 60° = 75°
<EAB=150 - внешний угол треугольника АВО =>
=> <EAB=<AOB+<ABO
<AOB=90, т.к. АВСD- ромб и AC и BD -диагонали ромба (взаимно перпендикулярны)
<ABO=<CDO=x, т.к. треуг. АВО=треуг.ВСО, т.е. у них равны соответственные углы
<BAO=<EAO-<EAB=180-150=30
<BAO=<BCO=y=30, т.к. треуг. АВО=треуг.ВСО, т.е.<span> у них равны соответственные углы</span>
2) BF-высота =>в<span> треугольнике AFB: <AFB=90, BF=4 см, <A=60 =>
</span>x=<AB)=90-30=60
Ответ: х=60, у=30
MH - MA + KA - HK = MH + AM + KA + KH = KA + AH + KH = KH + KH = 2KH