У правильной треугольной призмы в основании лежит правильный равносторонний треугольник. V=Sосн*H
Поскольку прямая ВА перпендикуляр АК
то плоскости тоже буду перпендикулярны
(по своисву прямых в плоскостях)тоесть при рисунке у нас получится двугранный угол квадрата который равен=90 градусам
<span>Объем пирамиды можно найти по формуле:
V = 1/3 Sh
Поскольку
апофема правильной пирамиды образует вместе с высотой пирамиды
прямоугольный треугольник, для нахождения высоты используем теорему
синусов. Кроме того, примем во внимание:
Первый катет
рассматриваемого прямоугольного треугольника является высотой, второй
катет - радиусом вписанной окружности (в правильном треугольнике центр
одновременно является центром вписанной и описанной окружности),
гипотенуза является апофемой пирамиды
Третий угол прямоугольного
треугольника равен 30 градусам ( сумма углов треугольника - 180
градусов, угол 60 градусов дан по условию, второй угол - прямой по
свойствам пирамиды, третий 180-90-60 = 30 )
синус 30 градусов равен 1/2
синус 60 градусов равен корню из трех пополам
синус 90 градусов равен 1
Согласно теореме синусов:
4 / sin( 90 ) = h / sin ( 60 ) = r / sin( 30 )
4 = h / ( √3 / 2 ) = 2r
откуда
r = 2
h = 2√3
В основании пирамиды лежит правильный треугольник, площадь которого можно найти по формуле:
S правильного треугольника = 3√3 r2.
S = 3√3 22 .
S = 12√3 .
Теперь найдем объем пирамиды:
V = 1/3 Sh
V = 1/3 * 12√3 * 2√3
V = 24 см3 .
Ответ: 24 см3 .
не забудь отметить как лучший ответ</span>
60 градусов, т.к. треугольник равносторонний
Треугольник, в котором центры описанной и вписанной окружностей совпадают, является равносторонним, и его сторона равна 18/3 = 6 см. Если Д - середина стороны ВС, то прямая АД - медиана треугольника АВС, она же и высота, так как данный треугольник равносторонний. Следовательно, треугольник АДС - прямоугольный, и радиус окружности, описанной около него. равен половине его гипотенузы: 6/2 = 3 см.
Ответ: 3 см.