В школе там посмотри должно быть решение.
Задача 14:
что эквивалентно объединению двух интервалов:
1)
2)
Таким образом, ответ 2)
Задача 15:
Расстояние между вершинами (или отрезок ВС на рисунке) это гипотенуза прямоугольного треугольника. Один катет треугольника уже известен - это расстояние между деревьями (АС). Второй (АВ) можно найти как разность высот деревьев.
Формула для гипотенузы: м
Задача 17:
Предполагаем, что точки M и N взяты так, что АМ =АN.
Поскольку АВ - диаметр, он делит угол NBM пополам, отсюда угол NBM = 2 NBA = 64°.
Сумма углов любого треугольника равна 180°, следовательно сумма углов NMB+MNB = 180°-64°=116°.
Треугольник MBN - равнобедренный, поэтому углы NMB=MNB, а осюда угол NMB=58°.
Площадь боковой поверхности цилиндра S1 = Lh = 2пRh, где L - длина окружности, лежащей в основании цилиндра, R - радиус основания, h - высота цилиндра.
Треугольник АРО = треугольнику ОВН как прямоугольные треугольники по гипотенузе РО=НО диагонали в прямоугольнике равны и в точке пересечения деляться пополам и острому\ углу угол АОР=уголНОВ как вертикальные, АО=ОВ=МА, треугольник МРО равносторонний, РА - медиана и высота, значит треугольник равнобедренный, МР=РО, но МО=РО, все углы =60, угол РОМ=60