1. В прямоугольный треугольник вписана окружность (см. рис 1). Проведем радиусы AN и AM к катетам HP и HT соответственно. Как видно из рисунка, образовался квадрат HNAM, для которого отрезок AH является диагональю.
Диагональ квадрата найдем по формуле:
, где d = AH - диагональ квадрата, a - сторона квадрата, которая нам известна (7м).
Ответ: .
2. В окружность вписан равнобедренный треугольник с тупым углом (см рис. 2). Для нахождения радиуса описанной окружности воспользуемся формулой:
, где a, b и c - стороны треугольника, а S - площадь треугольника.
Найдем площадь треугольника:
;
Найдем сторону треугольника AC из ΔHCA (∠H = 90°):
AC = BC, т. к. треугольник равнобедренный.
Найдем радиус окружности:
Ответ: м.
А- большее основание, б - меньшее. Так как трапеция равнобедренная, то меньший отрезок между высотой опущенной на а и ее вершиной равен (а-б)/2.
Так как угол при основании равен 45, то этот отрезок так же равен высоте(в).
(а-б)/2=в
(а-8)=2*4
а-8=8
а=16