А. 180-(18+65)=180-83=97
б. 180-(30+72)=180-102=78
в. 180-(53+94)=180-147=33
г. 180-(61+102)=180-163=17
R^=(5-1)^2+sqrt(3)^2=16+3=19
R=sqrt(19)
да принадлежит
Так как AD=CD, то BD- середина АС, тоесть медиана.По свойству равнобедренных треугольников медиана, проведённая к основанию является биссектрисой и высотой.Отсюда следует, что треугольник DBA равен треугольнику DBC по 1 признаку равенства треугольников ( по 2 сторонам и углу между ними)
Чтд
обозначим точку пересечения отрезков О
углы АОВ , ДОС - вертикальные - равны
стороны АО, ОС равны -половины отрезка АС
стороны ВО, ОД равны -половины отрезка ВД
ПЕРВЫЙ признак равенства :
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
треугольники АОВ , ДОС - РАВНЫ
тоже самое с треугольниками АОД и ВОС - тоже равны - по тому же признаку
теперь
треугольник АВС = треугольник АОВ +треугольник ВОС
треугольник СДА = треугольник АОД +треугольник ДОС
треугольники АВС и СДА равны, потому что состоят из двух равных треугольников
Ч.Т.Д
Рассмотрим <u>ромб АМСН </u>на рисунке, данном во вложении.
Его вершины А и С лежат на середине сторон квадрата.
Две другие вершины М и Н лежат на диагонали ВД квадрата.
МН - меньшая диагональ ромба- по условию равна 1/6 диагонали ВД квадрата со стороной 21 ( Отрезок <u>МН</u>, соединяющий вершины, расположенные на диагонали квадрата, - и <u>есть меньшая диагональ ромба</u>).
По формуле диагональ d квадрата равна d=а√2 =>
d=21√2,
следовательно, расстояние
МН=d:6=(21√2):6 см
АС - диагональ квадрата АВСО, сторона которого равна половине стороны исходного квадрата.
АВ=21:2=10,5см
АС=10,5√2 ( опять же по формуле диагонали квадрата<u> d=а√2</u>)
<em>Площадь ромба равна половине произведения его диагоналей</em>.
S АМСН=АС*МН:2={(10,5√2)*(21√2):6}:2=10,5*2*21:12=21*21:12см²
<u>Закрашенная часть состоит из 4-х таких ромбов. </u>
Её площадь равна
S=4*21*21:12=4*3*7*21:12=7*21=147см²
<span>Сумма цифр числа 147=12. </span>