При решении следует учитывать. что трапеция не только равнобедренная, но что и меньшее основание трапеции длиной равно боковым сторонам.
Сделаем рисунок.
Δ kbl равнобедренный, так как kb=bl как половины равных сторон аb и bс
<u> Тупой угол</u>b трапеции равен 180°-40°=140° .
Поэтому сумма углов bkl и blk равна 180°-140°=40°, а каждый из них равен 20° .
Углы треугольника lcm равны по величине углам треугольника bkl, так как сами эти треугольники равны.
Отсюда <u>величина угла klm,</u> большего в четырехугольнике <span> klmn, равна 180°-40°=140°</span>
Помогите решить ответ должен быть развернутым Дан треугольник АВС, К∈АВ, М∈ВС причём отрезок КМ
Диагональ в прямоугольнике( квадрате) равна диаметру окружности d=2r=2×5=10, тогда по теореме Пифагора
а²+а²=10²
2а²=100
а²=100:2=50
а=√50
S=a×a=√50×√50=50 cм²
По 2 пр. равенства треуг. т.к. угол DAB =углу DAC, угол АDB = ADC, а AD - общая сторона, треуг. ABD = ACD. Т. к. треуг. соответственно равны, то и их соответстенные стороны равны
Действительно, по теореме синусов сразу пришется ответ, задача сводится к вычислению sin(75) (везде имеются ввиду градусы!).
sin(75) = sin(90-15) = cos(15);
Известно, что 2*cos(15)*sin(15) = sin(30) = 1/2; пусть cos(15)=x; sin(15) = SQRT(1-x^2);
Имеем уравнение
x*SQRT(1-x^2) = 1/4; возводим в квадрат, получаем (проще иногда повторить вывод корней квадратного уравнения, сведя к полному квадрату - так легче бывает выбрать правильный знак у решения);
x^4-x^2+1/16 =0; (x^2 - 1/2)^2 = 1/4 -1/16; x^2 = (1+SQRT(3))/2;
а синус 75 градусов, сами понимаете, - корень :)
sin(75) = SQRT((1+SQRT(3))/2); Это - число. Синусы остальных углов:
sin(45) = SQRT(2)/2; sin(60) = SQRT(3)/2;
Ну, и сама теорем синусов
SQRT(3)/sin(75) = x/sin(45) = y/sin(60); Выписывать ответы не буду.