Ответ:
Да
Объяснение:
Да, он помещается, так как он (Рівнобічний, хз как на русском)
<u>Диагонали трапеции ABCD перпендикулярны и не равны</u> - но для решения задачи это не важно.
А важно то, что точки K, L, M и N - середины сторон трапеции ABCD
Диагональ МК четырехугольника KLMN- средняя линия трапеции ABCD.
<u>Средняя линия трапеции равна полусумме оснований</u>.
МК=(15+7):2=11см
----------------------------------------
<u>Возможно, нужно найти диагональ LN, а не КМ.</u>
Тогда перпендикулярность диагоналей важна для решения задачи ( для чего-то она ведь дана ).
Стороны четырехугольника параллельны диагоналям и потому углы его - прямые (диагонали пересекаются под прямым углом).
Черырехугольник KLMN - прямоугольник, и диагонали в нем равны.
Поэтому LN=МК=11 см
∠<span> 2 = 100% - 70% = 30% = 0,3
</span><span>180*</span>°<span>0,3=54</span>°
Теорема (Соотношение между сторонами и углами треугольника) . В произвольном треугольнике против большей стороны лежит больший угол.
Доказательство. Пусть в треугольнике АВС сторона АВ больше стороны АС. Докажем, что угол С больше угла В. Для этого отложим на луче АВ отрезокAD, равный стороне АС. Треугольник АСD - равнобедренный. Следовательно, Ð1 = Ð2. Угол 1 составляет часть угла С. Поэтому Ð1 < ÐC. С другой стороны, угол 2 является внешним углом треугольника ВСD. Поэтому Ð2 > ÐB. Следовательно, имеем ÐC > Ð1 = Ð2 > ÐB.
Следствие: В произвольном треугольнике против большего угла лежит большая сторона.
<span>Докажем, что если в треугольнике АВС угол С больше угла В, то и сторона АВ больше стороны АС. Действительно, эти стороны не могут быть равны, так как в этом случае треугольник АВС был бы равнобедренным и, следовательно, угол С равнялся бы углу В. Сторона АВ не может быть меньше стороны АС, так как в этом случае, по доказанному, угол С был бы меньше угла В. Остается только, что сторона АВ больше стороны АС. </span>