SO - высота пирамиды, она равна √(AS² - AO²) = √(2² - (√6*√2/2)² =
= √(4 - (12/4)) = √1 = 1.
Отрезок ВМ = √((3√6/4)² + (√6/4)² + (1/2)²) = 2.
Применим параллельный перенос отрезка ВМ точкой В в точку А.
Получим отрезок АМ1.
Соединим точку М1 с вершиной S, отрезок SМ1 имеет точно такие же разности координат, как и отрезок ВМ, поэтому тоже равен 2.
То есть, получен равносторонний треугольник, углы в нём по 60 градусов, в том числе и искомый между AS и ВМ.
Ответ: угол между прямыми AS и ВМ равен 60 градусов.
УголА=80,угол С=50 ну как то так
АВ:СВ=СВ:ВН ВН=СВ*СВ:АВ=11*11:22=5,5 АН=АВ-ВН=22-5,5=16,5
Вот решение задачи=)))))))))))))))))))))))))