Поскольку треугольники АОД и ВОС подобны, то их площади относятся как квадраты сходственных сторон, то есть Sаод/Sвос=ОДквадрат/ОВквадрат=36 корней из2/16 корней из 2=9/4. Отсюда АО/ОС=ОД/ОВ=3/2. Пусть АС=Х, ВД=У. Тогда ОВ=2/5*У, ОС=2/5*Х, АО=3/5*Х. Поскольку диагонали перпендикулярны, то треугольники ВОС и АОВ прямоугольные. Sвос=1/2*(2/5*Х)*(2/5*У)=16 корней из 2. Отсюда Х*У=200корней из2. Sаов=1/2*(3/5*X)*(2/5*У)=3/25*Х*У==3/25*(200 корней из 2)=24 корня из 2.
Sin²19+sin²(-71)+sin²19+(sin(-71))²=sin²19+sin²71=sin²19+sin²(90-19)=sin²19+cos²19=1
Средняя линия трапеции равна полусумме ее оснований.
Меньшее основание нам известно и оно равно 10. Осталось найти большее основание.
Опустим высоту трапеции, длина высоты будет равна меньшей стороне и равна 10. У нас получились квадрат и прямоугольный треугольник.
Рассмотрим прямоугольный треугольник. Т.к. острый угол равен 45, то и другой равен 45 ( по сумме углов треугольника). Значит треугольник равнобедренный с катетами равными 10.
Значит большее основание равно 10+10=20.
<u>Средняя линия трапеции равна (10+20)/2=15</u>
1)В треугольнике АМО:cosAMO=4/AM. cos30=кореньиз3/2.am=8кореньиз3/3(см). 2)Треугольник ВМО-равнобедренный,т.к. уголМ=45градусов,уголО=90,тогда уголВ=45.ВО=ОМ=4(см).Пусть ВМ=х(это гипотенуза).По теореме Пифагора:Хкв=4кв+4кв.Х=4кореньиз2. 3)В треугольнике СМО:уголС=90-60=30.МО-катет,лежащий против угла 30 и равный половине гипотенузы.МС=2*4=8(см)