Вроде так 1)--3;2)--2, так как площадь равна s=a2.
Рассмотрим проекцию треугольника РТМ на основание.
Это будет треугольник РМ₁Т.
Из точки М₁ опустим перпендикуляр на отрезок РТ, который является линией пересечения основания и заданной плоскости. Вертикальная плоскость, проходящая через этот перпендикуляр, даёт искомый угол.
Отрезок РМ₁ = РС - М₁С = 3 - (1/3)*4 = 3 - 4/3 = 5/3.
KM₁ = РМ₁*cos 30° = (5/3)*(√3/2) = 5√3/6.
ММ₁ = √(2²-(4/3)²) = √(4-(16/9) = √(20/9) = 2√5/3.
Отсюда тангенс искомого угла tgα = ММ₁ / KM₁ = (2√5/3) / (5√3/6.) = 4√5 / (5√3) =
=4 / √15 = <span><span>1.032796.
Угол </span></span>α = arc tg
1.032796 = <span><span>
0.80153
радиан = 45.92429
градуса
</span></span>
Косинус отношение прилежащего катета к гипотенузе
так как cos A = 1/2 то угол A = 60 градусов ( табличное значение)
значит угол В равен 30 градусов ( 180 - 90 - 60 )
катет АС лежит напротив угла В равного 30 градусов
сл-но равняется 1/2 гипотенузы
тоесть
АС = 1/2 АВ
cos A= AH / AC = 1/2
значит АН = 1/2 АС = 1/2 * 1/2 АВ = 1/4 АВ = 12 / 4 = 3
1. V = 1/3πH(R1² + R1R2 + R2²) S = π(R1² + (R1+R2)L + R2²)
Опустим из С высоту на AD. Она пересечет AD в точке E. Из тре-ка CDE DE = CD cos D = 8 cos 60 = 4
Если AD = 20 то AE = BC = 20-4 = 16
CE = CD sin 60 = 8 √3/2 = 4√3
и так: R1 = 16 R2 = 20 L = 8 H = 4√4
V = 1/3 π · 4√3 · (16² + 16·20 + 20²) = 3904 π √3
S = π · (20² + (20 + 16) 8 + 16² ) = 944π
2. R = 4 Sсеч = 32√3 h = 2
S = 2 π R (H+ R)
V = π R² H
Площадь сечения - высота H умноженная на ширину сечения.
Ширина сечения (x) находится из треугольника образованного двумя радиусами и хордой на которые они опираются. Высота этого треугольника дана, h = 2.
x = 2 √(R²-h²) = 2√(16-4) = 4√3
Если Sсеч = 32√3 = H · x значит H = Sсеч / x = 32√3 / 4√3 = 8
S = 2 π R (H+ R) = 2π 4 ( 8 + 4) = 96π
V = π R² H = π 4² 8 = 128π