<span>АВС и АDE - подобные треугольники, так как за вторым признаком <span>Если угол одного треугольника равен углу другого, а стороны, образующие тот угол в одном треугольнике, пропорциональны соответствующим сторонам другого, то такие треугольники подобны</span></span>
<span><span>стороны АВС - АВ=14 АС=18 ВС=16</span></span>
<span><span>угол ДАЕ=углу ВАС</span></span>
<span><span>тогда 14/7=18/9=16/х</span></span>
<span><span>16/х=2</span></span>
<span><span>х=8 ДЕ=8</span></span>
периметр АДЕ= 8+7+9=24
S=1/2*основание *высоту
20=1/2*8*высоту
4*высоту=20
высота=5 всё)
Биссектриса AE отсекает от прямоугольника равнобедренный прямоугольный треугольник с катетами AB=BE=4 и площадью (1/2)AB·BE=8. Заметим, кстати, что E является серединой стороны BD⇒вторая биссектриса пересечет BC в той же точке E; она отсечет такой же треугольник, что и первая, то есть его площадь также будет равна 8. Оставшаяся часть будет иметь площадь AB·BC-8-8=16.
Ответ: 8; 16; 8
<A=30°, из соотношения в прям-ом тр-ке
cos<A=AC/AB следует, что
AB=AC/cos30°=10√3:√3/2=20
Площади подобных треугольников равны 17смв квадрате и 68см в крадрате.
Сторона первого треугольника равна 8см. Надо найти сходственную сторону второго треугольникаОпределение: Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.
Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия. ΔABC ~ A1B1C1
1. Подобны ли треугольники? Почему? (заготовленный чертеж ).
а) Треугольник ABC и треугольник A1B1C1, если AB = 7, BC = 5, AC = 4, ∠A = 46˚, ∠C = 84˚, ∠A1 = 46˚, ∠B1 = 50˚, A1B1 = 10,5 , B1C1 = 7,5, A1C1 = 6.
б) В одном равнобедренном треугольнике угол при вершине равен 24˚, а в другом равнобедренном треугольнике угол при основании равен 78˚.
Вспомним теорему об отношении площадей треугольников, имеющих по равному углу.
Теорема: Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.
2. Письменная работа по заготовленным чертежам.
На экране чертеж:
а) Дано: BN : NC = 1:2,
BM = 7 см, AM = 3 см,
SMBN = 7 см2.
Найти: SABC
(Ответ: 30 см2.)
б) Дано: AE = 2 см,
EB = 5 см,
AK = KC,
SAEK = 8 см2.
Найти: SABC
(Ответ: 56 см2.)
3. Докажем теорему об отношении площадей подобных треугольников (доказывает теорему ученик на доске, помогает весь класс).
Теорема: Отношение двух подобных треугольников равно квадрату коэффициента подобия.
4. Актуализация знаний.
Решение задач:
1. Площади двух подобных треугольников равны 75 см2 и 300 см2. Одна из сторон второго треугольника равна 9см. Найти сходственную ей сторону первого треугольника. (Ответ: 4,5 см.)
2. Сходственные стороны подобных треугольников равны 6см и 4см, а сумма их площадей равна 78 см2. Найти площади этих треугольников. (Ответ: 54 см2 и 24 см2.)
При наличии времени самостоятельная работа обучающего характера.
Вариант 1
У подобных треугольников сходственные стороны равны 7 см и 35 см.
Площадь первого треугольника равна 27 см2.
Найти площадь второго треугольника. (Ответ: 675 см2.)
Вариант 2
Площади подобных треугольников равны 17 см2 и 68 см2. Сторона первого треугольника равна 8см. Найти сходственную сторону второго треугольника. (Ответ: 4 см.).