Высота, проведённая к основанию трапеции, делит трапецию на квадрат ( по условию) и ПРЯМОУГОЛЬНЫЙ треугольник, острый угол которго равен 45' градусов. Этот прямоугольный треугольник является равнобедренным, т.к. по теореме о сумме уголов треугольника <1+<2+<3=180'. <1=<2=45', а <3=90'. В равнобедренном треугольнике боковые стороны равны. В данном случае - это катеты. Обратимся ко второй фигуре - квадрату. Известно, что его площадь - 36 кв. см. Найдём сторону квадрата: а= 36:6, а=6 см. Найдём площадь треугольника: S=1/2ab, т.к. в данном треугольнике боковые стороны равны, то S=1/2aа, S=18 кв. см. Теперь найдём сумму площади квадрата и треугольника, получим сумму всей фигуры, в данном случае - трапеции S= 36+18=54 кв. см
SΔ=(1/2)*AB*AC*sin<A
SΔ=(1/2)*7*8*sin52°
SΔ=28*sin52°
S(поверх.конуса) = S(осн) + S(бок) = πR²+πRL
R-радиус
L - образующая
L=√R²+h²
L - образующая
R - радиус
h - высота
R=√L²-h² = √25²-20² = √625-400 = √225 = 15
S=πR²+πRL - по условию S/π ⇒ S=R²+RL=R*(R+L) = 15*(15+25) = 15*40 = 600
Пусть А- начало координат.
Ось Х - АС
Ось У - перпендикулярно АС в сторону В
Ось Z - AA1
Высота к АС=√(12^2-(16/2)^2)=4√5
Координаты интересующих точек
С(16;0;0)
К(4;2√5;6)
М(4;0;0)
Направляющий вектор КМ(0;-2√5;-6)
Угол между КМ и АС
cos a =| 16*0- 2√5*0-6*0|/|AC|/|KM|=0
a = π/2 - прямые перпендикулярны.
Уравнения плоскости АВС
z=0
Угол между КМ и АВС
sin a = |-6|/√(20+36)/1=3/√14