1. Объем конуса равен V=1/3пR²H Высоту (H) найдем через формулу площади боковой поверхности S=пRl, где l - образующая конуса, R=OB=2√2 2√2пl=24√3, откуда получим, что l=2√6, Н=√l²-R²=4 V=1/3п8*4=32
2. Объем цилиндра равен V=пR²H, где R=½AB=9, H=AA1 В прям-ом тр-ке А1АВ <А1ВА=30°, значит АА1=½А1В, найдем их по теореме Пифагора (2x)²-x²=18² (3x)²=18² 9x²=324 x²=324/9 x=6, значит АА1=6, А1В=12 V=пR²H=п*9²*6=486п
3.Объем призмы равен произведению площади основания на высоту призмы. В основании призмы прям-ый тр-к АВС, его площадь равна половине произведения катетов, т.е. 60. На рисунке изображена прямая призма, поэтому АА1 - высота призмы, поэтому тр-к А1АВ - прямоугольный, <АА1В=60°, <А1ВА=30°, значит АА1=½А1В, найдем их по теореме Пифагора (2x)²-x²=8² (3x)²=8² 9x²=64 x²=64/9 x=8/3 (АА1) V=SH=60*8/3=160
4. Объем пирамиды равен произведению 1/3 площади основания на высоту. В основании правильной пирамиды правильный многоугольник, в данном случае квадрат. Основание высоты пирамиды совпадает с центром квадрата. Найдем диагонали квадрата. Т.к. РС=24, <ОРС=45°, то ОР=ОС=12√2. Значит диагонали квадрата равны 24√2, а стороны квадрата 24. Площадь основания равна S=24²=576 V=1/3SH=1/3*576*12√2=192*12√2=2304√2
Всего полный круг - 360 градусов, если один угол 1= 63 градуса, то и угол 3 будет 63 градуса, т.к. они вертикальные, следовательно, два других одинаковых будут равны 360-(63+63)=234, следовательно один из двух оставшихся (угол 2) углов будет равен 117 градусов (как и 4 , т.к они вертикальные) .
Поскольку треугольник равнобедренный,то углы при основании равны. Сумма углов треугольника =180 градусов. Тогда углы при основании будут равны (180-50)/2=65⁰ Внешний угол равен сумме 2 внутренних углов не смежных с ним. В условии надо найти величину внешнего угла при основании. Он будет равен одному внутреннему углу при основании и одному противолежащему основанию 65⁰+50⁰=115° Ответ 115°