7)Треугольник СОВ подобен треугольнику AOD
OC/AO=BC/AD⇒OC/(12-OC)=6/10=3/5-козффициент подобия
5OC=36-3OC⇒8OC=36⇒OC=36/8=4,5
Треугольник PON подобен треугольнику BOC
NO/OC=3/5⇒NO/(4,5-NO)=3/5⇒5NO=13,5-3NO⇒8NO=13,5⇒NO=1 11/16
NP/BC=3/5⇒NP/6=3/5⇒NP=3,6
8)Проведем высоты ВМ и СК на АD/Получили 2 прямоугольных треугольника АВМ и CDN
<A=60⇒<ABM=30⇒AM=1/2AB=2
BM=√(16-4=√12=2√3
<D=45⇒<DCN=45⇒ND=CN=BM=2√3
MN=BC=3
AD=AM+MN+ND=2+3+2√3=5+2√3
CD=√2CN²=CN√2=2√3*√2=2√6
P=4+3+2√6+5+2√3=12+2√6+2√3
S=(BC+AD)*BM/2=(3+5+2√3)*2√3/2=8√3+6
9) Треугольник МBO равен треугольнику NBO по гипотенузе и катету⇒MB=NB=2
Треугольник МAO равен треугольнику KAO по гипотенузе и катету⇒AM=AK=4
Треугольник NCO равен треугольнику KCO по гипотенузе и катету⇒NC=KC=3
AB=AM+BM=4+2=6
BC=BN+CN=2+3=5
AC=AK+CK=4+3=7
P=6+5+7=18
<MON=360-<MBN-<BMO-<BNO=360-60-90-90=120
<AOM=180-<MON=180-120=60-смежные
<AOC=180-<AOM=180-60=120-смежные
Cos A = sin B = CH/BC
По теореме Пифагора найдём высоту
CH = √(BC²-BH²) = √(26²-24²) = √((26-24)*(26+24)) = √(2*50)= √100 = 10
cos A = CH/BC = 10/26 = 5/13
13 cos A = 5
Пусть х° - приходится на 1 часть, тогда меньший угол равен 5х°, а больший угол 7х°. Третий угол 5х°+44°. Сумма трех углов треугольника 180°. Получаем уравнение: 5х°+7х°+5х°+44°=180°
17х°=180°-44°
17х°=136°
х=8
∠1=5·8=40°
∠2=7·8=56°
∠3=40°+44°=84°
Дано:
∠АОВ=29°
∠FOE=63°
Найти:
∠АОС
Решение
1.За условием ∠АОВ=29°, а ∠FOE=63° вертикальный ему ∠ВОС,поетому∠FOE=∠BOC=63°
2.∠АОС= ∠АОВ+∠BOC
∠АОС=29°+63°=92°
Ответ:92°