равно 5^- 10 х + х^ = 25 - 10 х + х^
Скрещивающиеся прямые, это прямые, которые не лежат в одной плоскости.
а) Предположим, это не так. Тогда МА и ВС лежат в одной плоскости. Знасит МА и ВС пересекабтся или параллельны. Если они пересекаются, то прямая МА имеет ещё одну общую точку с плоскостью АВСD и значит, лежит в этой плоскости. Противоречие. Если же АМ параллельна ВС, То АМ и ВС образуют плоскость АМВС. Эта плоскости пересекает плоскость АВСD по прямой ВС и имеет с ней общую точку М. Значит эти плоскости совпадают. Значит МА лежит в плоскости АВСD. Противоречие. Наше предположение неверно, МА и ВС - скрещивающиеся прямые.
б)Угол МАD - угол между векторами АМ и АD. Но вектор СВ равен вектору АD, поэтому угол между АМ и СВ равен 45 градусов
В трапеции ABCD биссектриса угла BAD проходит через точку М которая является серединой CD.Известно, что AB=5, AM=4. Найдите длину отрезка BM .
=======================================================
Проведем MN | | AD (N∈ [AB] ) ;
CM =MD ⇒ AN = NB т.е. MB_медиана в Δ ABM .
<BAM = <MAD ;
<MAD =<AMN ( накрест лежащие углы) ;
<BAM =<AMN ⇒MN =AN =NB = AB/2 *** AB/2 =2,5**** ;
В Δ ABM медиана BM = AB/2 ⇒ <BMA =90° .
BM =√(AB² -AM² ) =√(5² -4²) =3
****************************** а вообще ************************************
(2m(a))² +a² =2(b² +c²) , где m(a) медиана приведенная к стороне а .
(2*MN )² + AB² =2( BM² + AM²) .
Картинка не крепится, там удобнее, если что неясно - спроси.По формуле Герона вычисляем площадь. S=√ (p(p-a)(p-b)(p-c)), где р- полупириметр, Р=21
S=√(21*6*7*7)=84,
Но S=1/2a*h => h=2S:a, тогда h1=2*84:15=168:1511,2; h2=168:14=12; h3=168:13=12,93 h1+h2+h3=11,2+12+12,93=36,13
√