Т.к. противолежащие ребра равны, получается AB=CD=1, AA1=DD1=2. По теореме Пифагора: AD1=√(1²+2²)=√5. Аналогично СD1=√5. AC=√(1²+1²)=√2. Рассмотрим ΔACD1: Он равнобедренный, т.к. AD1=CD1=√5. Соответственно , высота этого треугольника (назовем её D1M), проведенная к основанию АС и будет являться искомым расстоянием <span> от точки D1. В равнобедренном треугольнике высота, проведенная к основанию, является и медианой, поэтому AM=CM=(</span>√2)/2. Теперь по т. Пифагора можно найти катет D1M ΔD1MA: D1M=√(AD1²-AM²)=√((√5)²-((√2)/2)²)=√(5-1/2)=√4.5
1проведи линию (по клеткам)
2 проведи еще одну линию АВ, отступив 2 клетки(к примеру)
примем стороны за а и в, тогда 2*(а+в)=52 а+в=26. расстояние от точки пересечения диагоналей до стороны равно половине стороны. Тогда
Точно не помню, но вроде так:
Их площади относятся как произведение сторон, заключающих этот угол.
Это утверждение легко доказывается из формулы:
S треугольника = 0,5*a*b*sin угла между ними, где a и b - стороны треугольника, заключающие этот угол.
S1=0,5*a1*b1*синус угла.
S2=0,5*a2*b2*синус угла.
Разделим первое выражение на второе.
синусы сократятся, т. к. углы равны. , 0,5 также сократится.
получаем: