Площадь кольца можно найти отняв от площади круга с большим радиусом, площадь круга с меньшим радиусом.
S=b^2*1/2sin(2a), где b -сторона равнобедренного треугольника, а - угол основания.
1) S=12,8^2*1/2sin60
2) S=12,8^2*1/2sin90
3) S=12,8^2*1/2sin120
Ответ: 1) 40,96√3; 2) 81,92; 3) 40,96√3
Пользуясь рисунком, (см. вложение) и зная, что — диаметр окружности, — хорда окружности, определим .
В окружности половиной диаметра являются радиусы, значит, эти радиусы будут равны и хорде:
В образовавшемся треугольнике получается, что все три стороны по длине равны, следовательно, этот треугольник является <em>равносторонним</em>, у которого все углы равны по .
Как известно, точка касания касательной к окружности и радиуса окружности пересекаются под прямым углом ().
Отсюда следует, чтобы узнать , нужно найти разность развёрнутого угла () от суммы других известных углов:
Ответ: 30°
АВ = (41*41-9*9)^0,5 = 40 по теореме пифагора
Этот угол равен 110Проведи в треугольнике среднюю линию MN параллельную AB. Угол BMN равен углу АBM, как внутренние накрест лежащие при параллельных прямых (средняя линия MN параллельна AB) и, следователен, равен 40 градусам, поскольку угол АBM равен 40 градусам по условию. А теперь рассмотрим треугольник BMN. Средняя линия MN равна половине АB, но BM тоже равна половине АВ по условию. Значит, треугольник ВМN равнобедренный с углом 40 градусов при его вершине М. Тогда два других угла равны (180-40)/2=70 градусов, потому что сумма углов треугольника равна 180 градусов, а углы при основании равнобедренного треугольника равны между собой. Но угол АВС=угол АВМ + угол МВN, а угол МВN равен 70 градусам. Значит угол АВС=40+70=110 градусов.