Обозначим трапецию буквами ABCD. Пусть угол BAD=90 градусов, AD - нижнее (большее) основание, BC - верхнее (меньшее) основание
По условию AD=20см, CD=20см, угол CDA=60 градусов
Опустим из точки C высоту на нижнее основание, пусть CE - высота. Рассмотрим треугольник CDE. Он прямоугольный, угол CED=90 градусов
Тогда ED=CD*cos CDE=20*cos 60=20*1/2=10см
Найдем AE:
AE=AD-ED=20-10=10
Так как трапеция прямоугольная, EC=AB, BC=AE=10см
Ответ: меньшее основание трапеции 10см.
В прямоугольном равнобедренном треугольнике углы при основании равны 45°. и высота отпушенная с прямого угла и медиана, и высота, и биссектриса. значит чертим треугольник АВС и с точки С отпускаем на сторону АВ высоту СД, который делит АВ пополам, получили 2 равных треугольника АДС и ДВС. АД=1/2АВ. АД=6 см. треугольник АДС равнобедренный АД=СД=6 см.
ответ: 5см.
Якщо катети трикутника дорівнюють 3 і 4 см, то гіпотенуза 5 см (єгипетський трикутник), Р=3+4+5=12 см.
48:12=4, це коефіціент пропорційності даних трикутників
5*4=20 см це найбільша сторона більшого трикутника.
Відповідь: 20 см.
1) Дано: ABCD - трапеция,∠А=90°, ∠С-∠В=48°.
Найти: ∠D, ∠С, ∠В
Решение: 1.Рассмотрим трапецию АВСD. ВА∫∫CD(по опр. трапеции) ⇒ сумма односторонних углов равна 180°(по св-ву парал. прям. и сек.). Пусть секущей будет DA, тогда ∠А+∠D=180° ⇒ ∠D=180°-90°=90°. Возьмем СВ как секущую, тогда ∠С+∠В=180°(по св-ву).
2. Получим систему:
∠С+∠В=180°
∠С-∠В=48°
Такое возможно, только если один из углов равен 114, а второй 66. (Найти можно методом подбора). Тогда ∠С=114°(т.к.он тупой), а ∠В=66°(т.к.он острый).
Ответ: 90°, 114°, 66°
2) Дано: ABCD - прямоугл., ∠АВО=36°
Найти: ∠АОD
Решение:1.Рассмотрим BD и АС. Они пересекаются в точке О, при этом делятся пополам(по св-ву параллелогр.). Также диагонали равны(по св-ву прямоуг.)⇒ВO=ОА.
2.Рассмотрим ΔВОА: ВО=ОА ⇒ ΔВОА - равнобедр.(по опр.) ⇒ ∠ОВА=∠ВАО=36°(по св-ву равноб. Δ). По теореме о сумме углов треугольника найдем ∠ВОА: 180-36-36=108°.
3. ∠ВОА смежен с ∠АОD. То есть их сумма равна 180(по св-ву) ⇒ ∠AOD=180-108=72°
Ответ: 72°
ΔAKE = ΔKDC по двум сторонам и углу между ними ⇒ KD = KE ⇒
⇒ ∠KDE = ∠KED ⇒ ∠ADK = ∠KEC ⇒ ΔAKD = ΔKEC по двум сторонам и углу между ними ⇒ AD - BC ⇒ ΔABD = ΔEFC по стороне и двум прилегающим углам ⇒ AB = FC ⇒ BK = KF, что и требовалось.