Дано тр. ABC
К, M - середины AB и ВС
AB=BC
BD - медиана
Док-ть:
тр. BKD = тр. BMD
Док-во:
так как K и M по условию середины сторон AB и ВС, то KM - средняя линия тр. ABC
AB=BC (по условию тр. равнобедренный), след-но BK=BM и угол BKM = углу BMK (углы при основании равнобедренного тр.)
BD - медиана (из определения - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны), след-но KD=DM
Значит по первому признаку равенства треугольников: Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
эти треугольники равны (BK=BM, KD=DM, угол BKM = углу BMK)
Подробнее - на Znanija.com - znanija.com/task/963446#readmore
1.
а) Продолжаем прямую А1М до пересечения с продолжением ркбра В1В в точку Р.
Точка Р принадлежит и прямой А1Р(А1М) и плоскости ВВ1С1, поскольку прямая В1Р принадлежит этой плоскости. Значит точка Р т является искомой точкой.
б)Точки Р и С1 принадлежат и плоскости А1МС1 и плоскости ВВ1С1. Значит линия пересечения этих плоскостей - прямая С1Р.
в) Прямая С1Р пересекает ребро ВС в точке К.
Эта точка принадлежит и плоскости АВС и плоскости А1МС1. Точка М также принадлежит и плоскости АВС и плоскости А1МС1. Через эти две точки можно провести только одну прямую КМ и эта прямая - искомая линия.
г) Соединив все имеющиеся точки получим искомую плоскость сечения МА1С1К.
2.
Продолжим прямую DM до пересечения с ребром ВС грани АВС. Получим точку Т, которая принадлежит плоскости ADT и плоскости АВС. Точки N и М принадлежат плоскости ADT, так как лежат на прямых AD и DT.
Проведя прямые NM и АТ до их пересечения, получим точку Р, принадлежащую плоскостям АDТ и АВС и, естественно, прямой MN и плоскости АВС. Соединив точки К и Р, получим точку Е на ребре ВС, принадлежащую плоскости АВС и плоскости КМР. Проведя прямую ЕМ до пересечения с ребром DC, получим точку Q. Соединив точки K, N, Q и E, получим искомое сечение.
точка О-середина AC и BD и AO=ОС, ВО=ОД=> треугольник АОБ равнобедренный. АО=12/2=6=> AО=ВО=6.
против угла 30 градусов лежит катет, равный половине гипотенузе=12/2=6, СД=АБ
Р=6+6+6=18см
Сумма внутренних односторонних углов равна 180 градусов.
Пусть углы это х и у, тогда
Проверка:
126 - 54 = 72, выполняется, значит, решено верно.