1)АВ=АС=12 (по теореме о отрезках касательных к окружности)
2) ОС перпендикулярен к АС ( АС-касательная, а ОС-радиус)
3) рассм. треугольникАСОон прямоугольный т.к ОС перпендикулярен к АС.. АС=12, ОС=9,а АО гепотенуза.. находим по теореме пифагора АО=Квадратный корень из (81+144)=квадратному корню из 225=15.
В тр-ке, образованном, высотой конуса, его образующей и радиусом основания, угол между образующей и радиусом обозначим α, его и найдём.
Тангенс альфа равен отношению высоты к радиусу. Радиус равен половине диаметра: R=3√3.
tgα=h/R=18/3√3=6/√3=2√3.
α=arctg(2√3)≈74° - это ответ.
находим гипотенузу через косинус и прилежащий угол
с=4а/корень из 3
отсюда радиус равен половине гипотенузы r=2а/корень из3
высота равна гипотенузе (см. решение раньше)
объем = пи*16а^3/3корня из3
Расмотрим треугольник аве
бис-са угла б делит углы на 45.
угол а 90. из этого следует что угол е =45. треугольник аве равнобедренный, значит ав = 17 см.
ад=ае+ед
ае=17, ед =21, значит ад 38.
Р= 2ад и 2ав= 38+38+17+17= лень считать))