Определим вид треугольника ABC:
Следовательно ΔABC прямоугольный ∠B = 90°
Найдем площадь ΔABC как полупроизведение катетов:
Т.к. D - середина стороны AC, то BD - медиана, которая делит ΔABC на два равновеликих треугольника ⇒
Катет BC равен половине гипотенузы AC ⇒ ∠BAC = 30°
Т.к. точка D - середина гипотенузы, то она является центром описанной окружности и BD = AD, а следовательно ΔABD равнобедренный и ∠ABD = ∠BAC = 30°
Расстояние от точки A до прямой BD равно длине перпендикуляра AH, опущенного из этой точки на прямую BD и находится из прямоугольного ΔABH:
Теорема Пифагора: c²=a²+b² (Где a и b катеты,а с-гипотенуза)
Для начала найдём 1/2 второй диагонали : 16:2=8
Дальше по теореме Пифагора находим 1\2 нужной нам диагонали:
10²-8² = √36=6
Сама диагональ будет равна: 6*2=12
Если биссектриса является и медианой и высотой,следует треугольник равнобедреный.
Прри равнобедренном треугольнике углы при основании = 45 градусов.
Углы при основании - А и С
А=45
С=45
Сумма углов треугольника=180 градусов
45+45=90
180-90=90
Ответ: Угол В=90 градусов
1. Пусть дана РАВНОБОКАЯ трапеция АВСD. Проведем ДВЕ высоты ВM и СN из вершин тупых углов. Образовавшиеся прямоугольные треугольники АВM и DCN равны по катету и гипотенузе. У равных треугольников против равных сторон лежат равные углы. Следовательно, <A = <D, что и требовалось доказать.
2. Соединим середины диагоналей АС и ВD отрезком FG и продлим его в обе стороны до пересечения с боковыми сторонами трапеции АВ и CD в точках Е и H соответственно. В равнобокой трапеции диагонали равны, следовательно, AF=DG и FO=GO (точка О - точка пересечения диагоналей). Тогда в треугольнике АОD отрезок FG параллелен основанию AD. => Прямая ЕН - средняя линия трапеции, а EF и GH - средние линии треугольников АВС и DBC. => EF=GH=BC/2. => EH=BC+FG.
Средняя линия ЕН трапеции равна полусумме ее оснований, то есть ЕН=(BC+AD)/2 => BC+AD=2EH => BC+AD =2(BC+FG). => FG=(AD-BC)/2, что и требовалось доказать.