Вот, держи решение. Надеюсь, помогла :)
дано: авсд - параллелограмм
ам=мб мс=мд.
доказать: авсд - прямоугольник
доказательство: так как ам=мб ад=вс и мс=мд, то треугольники амд и амс равны по третьему признаку(по трём сторонам)
так как эти треугольники равны, то и углы у них равны(угол всм = углу мда; угол свм = углу дамЖ угол смв = углу дма) , нас интересуют углы дам и свм. они односторонние, значит их сумма должна быть 180 градусов (так как вс и ад параллельны а ав их пересекает, а при пересечении двух параллельных прямых третьей сумма односторонних углов равна 180 градусов). следовательно угол дам и угол сбм = 90 градусов, а если в параллелограмме хотябы один угол прямой, то это прямоугольник.
всё.
Решать можно двумя способами
1) прямоугольник( соответственно и его половина - прямоуголный 3-уг) имеет наибольшую плошадь при равенстве сторон , т.е. квадрат. Это если мы это знаем. Тогда катеты его равны между собой и равны ( по т. Пифагора, по синусу-косинусу, разное можно предложить )
например
2) если мы этого не знаем, тогда пусть одна сторона будет х, тогда другая будет
берем производную, приравниваем к 0 (находлим экстремум). В результате находим Х, который равен тому, что в 1) другая сторона такая же (тоже ее находим по т. Пифагора))