Образующая
l = 40 см
Радиус основания
r = 48/2 = 24 см
Площадь основания
S₁ = π·r² = π·24² = 576π см²
Боковая поверхность
S₂ = π·r·l = π·24·40 = 960π см²
Полная площадь конуса
S = S₁ + S₂ = 576π + 960π = 1536 см²
V(41^2-9^2)=v(1681-81)=v1600=40 это кусок большего основания который высота отсекает
пусть меньшее основание-х тогда большее основание-х+40 тогда уравнение
(x+x+40)/2=26
2x+40=52
2x=12
x=6 меньшее основание
6+40=46 большее
биссектрисса делит угол на два равных угла по определению. перпендикуляр с биссектриссой делят треугольник на четыре части две из которых образуют два прямых треугольника с одной вершиной. Достаточно доказать что эти два треугольника равны и будет доказано что их гипотенузы так же равны.Но у них два одинаковых угла : первые образованы биссектрисой и по определению равны.Вторые прямые ( по определению перпендикуляра) и также равны между собой и равны 90 градусов.Т.к. сумма углов в треугольнике равна 180 градусам ,то это значит и третьи углы в треугольниках равны. А следовательно и треугольники равны между собой.следовательно у них равные гипотенузы, как собственно и катеты.
АВ = ВС
по теореме косинусов:
AC^2=AB^2+BC^2-2*AB*BC*cosB
84=2BC^2-2BC^2*cos120
84=2BC^2+BC^2
3BC^2=84
BC^2=28
BC=2kop7
угол А = угол С = (180 - угол В)/2 = (180 - 120)/2 = 60/2 = 30 градусов.
так как АМ - медиана, то
ВМ=МС=ВС/2=кор7
По теореме косинусов
AM^2=AC^2+CM^2-2AC*CM*cosC
AM^2=84+7-28kop3*cos30
AM^2=91-42
AM^2=49
AM=7
<span>ответ: 7</span>
проводишь высоту паралельную боковой стороне( та которая 8 см)