BC = 7, насколько я понял)
(36:3)+(3*3)
Только так но можно по другому но решение поменяет смысл
В треугольнике АВЕ угол АВЕ=180-90-<А=90-50=40. Значит <В=<АВЕ+<СВЕ=40+20=60. Тогда <АСВ=180-<А-<В=180-50-60=70.
Сначала нацди угол КСD =45 потому что сумма всех углов треугольника KCD равна 180 градусов потом АВ равнчется BC равняется СК равняется АК равняется 10 см. Треугольник КCD равнобедренный, сторона СК равняется КD равняется 10 см.
АD = АК +КD
АD =10+10=20 см
<em>В правильной треугольной пирамиде DABC боковые ребра DA,DB и DC взаимно перпендикулярны. Вершина D является центром сферы , на поверхности которой лежат точки A,B, и C. <u>Найдите площадь сферы,</u> если ее высота равна 2√3 см.
</em>-------
<span>Понятно, что 2√3 см - высота пирамиды, т.к. у сферы нет высоты.
-------------
</span><span>Боковые ребра пирамиды взаимно перпендикулярны, вершины ∆ АВС лежат на поверхности сферы, D- ее центр, следовательно, <em>все ребра данной пирамиды <u>равны радиусу R сферы</u></em>, и боковые грани - равнобедренные прямоугольные треугольники/
</span> Боковые ребра пирамиды равны, ⇒ равны их проекции на плоскость треугольника АВС, ⇒ основание О высоты DО лежит в центре описанной вокруг ∆ АВС окружности.
Пусть стороны основания равны 2а.
Высота DH боковой грани делит ее на два равнобедренных прямоугольных треугольника, является её медианой и равна половине стороны основания. DH=a ⇒
R сферы =AD
<em>АD</em> = DС= <em>a√2</em> как гипотенуза равнобедренного прямоугольного треугольника DHC.<span>
<em>AO</em>=<em>2a /√3</em> как радиус описанной вокруг ∆ АВС окружности.
</span><span><em>AD²</em>=OD²+AO²
(a√2)²=(2√3)²+(2a/√3)²
</span><span>2a²=12+(4a²/3)
</span><span>6a²=36+4a²
</span><span>2a²=36
</span><em>AD²</em>=36=<em>R²</em>
Sсферы=4πR²
<span>S=4*36π=144π см<span>²</span></span>