1) Треугольник BCD - прямоугольный с гипотенузой 10 и катетом 8. Тогда второй катет равен 6 (из теоремы Пифагора). Площадь треугольника равна полупроизведению высоты на основание: S = BD * AC / 2 = 6 * 14 / 2 = 42 (см²). Проведём высоту к BC (AH). S = BC * AH / 2, AH = 2 * S / BC = 84 / 10 = 8.4 (см)
2) Из теоремы Пифагора для треугольника ABD найдём катет: AD = 8 см.
Площадь треугольника ABC равна AD * BC / 2 = 14 * 8 / 2 = 56 (см²)
Аналогично найдём высоту к AB (CL):
<span>S = CL * AB / 2, CL = 2 * S / AB = 112 / 10 = 11,2 (см)</span>
Введем систему координат. Нарисуй как обычно взаимно перпендикулярные оси и Расположи точки. (0;2) (2;4) и ( 0; 4)
Точка А находится на таком же расстоянии от К, как и В.
Понятно что ВК = 2, значит АК тоже равно 2. Поэтому координата Точки А (0;6)
Рассмотри треугольник АВС. На нашей картинке хорошо видно, что он прямоугольный. Найдем гипотенузу по теореме Пифагора 4²+4²= 32
Ав= 4√2, АО=ОС= 2√2
Точка О - центр окружности имеет координаты. (2; 4) видно на картинке.
Ответ (х-2)²+(у-4)²= (2√2)²
ABCD прямоугольник,следовательно ВС=AD=16см.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.Значит AO=DO=12см
Тогда периметр треугольника AOD равен 2*12+16=24+16=40см