Вершин будет 9.Сумма углов выпуклого многоугольника равна 180 (n-2) и (9-2)=1260 градусов.Или с другой стороны 3×100 + 6×160=1260.
3. Пусть О - точка пересечения диагоналей.
∠CFO = ∠EDO как накрест лежащие при пересечении параллельных прямых CF и DE секущей FD,
∠COF = ∠EOD как вертикальные, значит
ΔCOF подобен EOD по двум углам.
CF : DE = FO : OD
CF : 12 = 12 : 8
CF = 12 · 12 / 8 = 144 / 8 = 18
4. ∠QTH = ∠QNP как соответственные при пересечении параллельных прямых ТН и NP секущей QN,
угол при вершине Q общий для треугольников QTH и QNP, значит эти треугольники подобны по двум углам.
TH : NP = QT : QN
TH = NP · QT / QN = 25 · 12 / (12 + 8) = 25 · 12 / 20 = 15
5. OC : OK = 8 : (8 + 12) = 8 : 20 = 2 : 5
OB : OM = 6 : (6 + 9) = 6 : 15 = 2 : 5
ΔBOC подобен ΔМОК по двум пропорциональным сторонам и углу между ними.
ВС : МК = 2 : 5
ВС = 2 · 18 / 5 = 36/5 = 7,2
По условию:
h = ВС = 9 см
∠А = 60°
Рассмотрим прямоугольный треугольник АВС (∠С=90) :
1) ВС=h= 9 см ; АС=r - катеты
АВ = l - гипотенуза
2) Сумма острых углов прямоугольного треугольника 90°
∠В = 90 - ∠А ⇒ ∠В = 90 - 60 = 30°
Катет, лежащий против угла в 30° равен половине гипотенузы. Следовательно:
АС =¹/₂ * АВ ⇒ АВ = 2АС ⇒ l = 2r
По теореме Пифагора: АВ² = АС² + ВС²
(2r)² = r² + 9²
4r² - r² = 81
3r² = 81
r² = 81/3
r² =27
r=√27
r=√(9*3)
r= 3√3 ⇒ АС = r = 3√3 см
3) Объем конуса :
V= ¹/₃ * πr²h
V = ¹/₃ π (3√3)² * 9 = ¹/₃ * (√27)² * 9*π = ²⁴³/₃ π = 81π (см³)
при π ≈ 3,14 ⇒ V ≈81 * 3.14 ≈ 254.34 (см³)