Напиши дополнительные углы. мы сейчас проходим эту тему)
А) ∠( AC, AB) = 90°, т.к. угол между сторонами квадрата равен 90°;
б) Переносим параллельным переносом вектор DA так, чтоб его начало было в точке А.
Тогда угол между векторами DA и AB равен 90° + 45° = 135°;
в) ∠(OA, OB) = 90°, т.кю угол между диагоналями квадрата равен 90°;
г) (тут то же самое, что и под буквой в);
д) Аналогично ∠(OA, OC) = 90°, т.к. угол между диагоналями равен 90°;
е) Векторы AC и BD сонаправлены, значит, угол между ними равен 0°.
ж) Переносим вектор DB параллельным переносом так, чтоб его начало совпадало с точкой А.
Тогда ∠(AD, DB) = 135°.
з) Переносом вектор OC параллельны переносом так, чтоб его начплао совпадало с точкой А.
Угол между векторами остался таким жеч как и угол между диагоналями, т.е. 90°.
Ответ:
Сори, остальное не успеваю
1. рассмотрим треугольник АВС - равнобедренный, значит, углы ВАС и ВСА равны.
2. т. к. ABCD - трапеция, то ВС параллельно АD, углы ВСА и САD равны как накрест лежащие для параллельных прямых ВС и АD и секущей АС.
3. значит, углы ВАС и ВСА и САD равны.
4. т. к. ABCD - равнобедренная трапеция, то углы при основаниях равны, т. е. углы ВАD и СDA равны.
5. т. к. углы ВАС и ВСА и САD равны, углы ВАD и СDA равны, то угол СDA=2угла САD.
6. т. к. сумма градусных мер острых углов прямоугольного треугольника равна 90°, а угол СDA=2угла САD, то угол САD=30°, угол СDA=60°.
7. угол СDA = углу ВАD = 60°
8. т. к. ABCD - равнобедренная трапеция, то углы при основаниях равны, т. е. углы СВА и BCD равны.
9. сумма градусных мер углов трапеции равна 360°, углы СВА и BCD равны, угол СDA = углу ВАD = 60°, значит угол СВА = углу BCD = (360°-120°):2=120°
Ответ: 60°, 60°, 120°, 120°.
Соединим В с О Тр-к ОАВ прямоугольный т.к. ОВ перпен к АВ По Пифагора ОВ=кор изАО2-АВ2=841-400=441=21