Рассмотрим треугольник СОВ и AOD.AO=OB=OC=OF (как радиусы)
∠1 =∠2(вертикальнве). ЗНАЧИТ треугольник Сов=AOD по второму признаку. Следовательно AD=CB=13см и AO=OB=OC=OD=8см. Тогда Р=AO+OD+AD=8+8+13=29 см.
Так как точка удалена от каждой стороны правильного треугольника на одинаковое расстояние, то проекция этой точки на площадь этого треугольника совпадает с центром вписанной в этот треугольник окружности. Теперь мы можем найти радиус этой окружности за теоремой Пифагора r^2=10^2-8^2=36, r=6 см. Теперь найдем сторону правильного треугольника: а=два радиуса умножить на корень из 3. а=12 корень из 3 см. S=(a^2 корень из 3)/4=108 корень из 3 см^2.
(1/5)*360=72(Градусная мера дуги)
Вписанный угол измеряется половиной дуги,на которую он опирается
72/2=36(Величина вписанного угла)
Ответ:36
Это прямоугольник прямоугольный (по условию) следовательно сумма острых углов равна 90°
х=90-35= 55°