при х=2,потому что ,скалярное произведение векторов равно 4х-8
а т.к. перпендикулярны,оно должно быть равно нулю
4х-8=0
4х=8
х=2
Номеров заданий не видно, поэтому:
1) КО/ОА=tgА=tg45°=1. Отсюда КО=ОАtgA=3*1=3
КО/МК=sinM=sin60°=√3/2. Отсюда МК=КО/sinM=3/(√3/2)=2√3 (ответ 2)
2) По теореме Пифагора (из ΔМТР) МТ²+РТ²=МР². Отсюда МР=√(МТ²+РТ²)=√(4²+8²)=√(16+64)=√80=4√5
tgP=MT/TP=4/8=1/2 (из ΔМТР)
tgP=MК/МP (из ΔКМР). Отсюда МК=МРtgР=4√5*(1/2)=2√5
По теореме Пифагора (из ΔМТК) МТ²+ТК²=МК². Отсюда КТ=√(МК²-МТ²)=√((2√5)²-4²)=√(20-16)=√4=2
3) По теореме синусов (для ΔАВQ) АВ²=AQ²+BQ²-2AQ*BQcosQ. Отсюда cosQ=(AQ²+BQ²-АВ²)/(2AQ*BQ)=(6²+5²-5²)/(2*6*5)=36/60=0,6
По теореме синусов (для ΔPRQ) PR²=PQ²+RQ²-2PQ*RQcosQ. Отсюда PR=√(PQ²+RQ²-2PQ*RQcosQ)=√((4+6)²+(7+5)²-2(4+6)(7+5)*0,6)=√(100+144-144)=√100=10
Периметр четырёхугольника АВRP равен:
АВ+BR+RP+PA=5+7+10+4=26
Пусть в равнобедренном тр-ке СЕВ ∠СЕВ=∠ЕВС=х.
В равнобедренном тр-ке АВС ∠АВС=∠АСВ=х, следовательно ∠ЕСВ=∠АСВ-∠АСЕ=х-18°.
Сумма углов в ΔСЕВ х+х+х-18=180,
3х=198,
х=66°.
Ответ: ∠АВС=66°.
///////////////////////////////////////