Рассмотрим четырехугольник AHOG, где O-точка пересечения высот треугольника ABC, H и G-основания перпендикуляров из точки О на стороны треугольника. тогда искомый угол равен
360-60-90-90=120 градусов. Тогда острый угол равен 180-120=60.
Ответ: 60 градусов.
По теореме синусов
CE/sin∠D = DE/sin∠C
DE = sin∠C*CE/sin∠D = 1/2*5√2/(1/√2) = 1/2*5*2 = 5
Надо провести высоту к основанию(она же будет медианой(делить основание на 2 равных отрезка) и биссектрисой угла, который находится напротив основания)
<span>теперь у нас есть 2 равных прямоугольных треугольника:
рассмотрим один из них - боковая сторона р/б это гипотенуза,а
один из его острых углов равен половине угла р/б при вершине.
84/2=42*
теперь по т.синусов мы можем найти катет, который равен половине основания р/б(синусА=противолежащий катет/гипотенуза):
синус 42=0,</span><span>67 (округленно)
0,67=катет/20
катет=20*0,67
катет=13.4 см
Основание р/б=2* 13.4
</span>Основание р/б=<span>26.8</span><span>
периметр = 2*боковая сторона+основание
периметр=2*20+26.8
периметр=66.8см
</span>
У любого параллелограмма противоположные углы равны
Сумма всех углов параллелограмма равна 360°.
АВСД - параллелограмм, ∠А=∠С, ∠В=∠Д
∠А+∠В+∠С+∠Д=360°
Рассмотрим условие
а)сумма двух его противоположных углов равна 94 градуса.
То есть ∠А+∠С=94°
а поскольку ∠А=∠С, значит ∠А=∠С=94°/2=47°.
∠А+∠В+∠С+∠Д=360° и ∠В=∠Д, значит
47°+∠В+47°+∠Д=360°
∠В+∠Д=360°-94°
2∠В=266°
∠В=∠Д=266°/2
∠В=∠Д=133°
Ответ: при условии а) ∠А=∠С=47° и ∠В=∠Д=133°.
Рассмотрим условие
б)разность двух из них равна 70 градусов
Поскольку противоположные углы равны у параллелограмма, значит
разность противоположных углов равна 0°.
Выходит, что 70° это разность между двумя соседними углами, то есть
∠В-∠А=70°.
Допустим, что ∠А=Х°, значит
∠А=∠С=Х°
∠В=∠Д=Х°+70°
∠А+∠В+∠С+∠Д=360°
х+(х+70)+х+(х+70)=360°
4х+140°=360°
4х=220°
х=220°/4
х=55°
То есть ∠А=∠С=Х°=55°
∠В=∠Д=Х°+70°=55°+70°=125°
Ответ: при условии б) ∠А=∠С=55° и ∠В=∠Д=125°