Сумма углов треугольника равна 180 градусов
180/3=60 - первый угол
<span>60-20=40 - второй угол</span>
60+20=80 - третий угол
Все углы меньше 90 градусов => треугольник остроугольный
1). Внешний угол при вершине А равен (180°-а). Sin(190-a)=Sina.
Sina=BC/AB (отношение противолежащего к гипотенузе)
АВ=√(АС²+ВС²)=√130. Sina=9/√130.
2). Сторона ромба равна по Пифагору: а=√(6²+8²)=10.
Косинус половины тупого угла равен отношению прилежащего катета (половины меньшей диагонали) к гипотенузе (стороне ромба). То есть Cosα=0,6. Sinα=0,8. Cos2α=1-2Sin²α (формула приведения).
Тогда косинус тупого угла равен Cos2α=1-1,28=-0,28.
Ответ: косинус тупого угла ромба равен -0,28.
S=πR² - формула для вычисления площади круга.
πR²=4π
R²=4π:π
R²=4
R=2
C=2πR - формула для вычисления длины окружности
С=2π•2=4π
Ответ: 4π.
Решение приведено во вложении
АС=√((-3-1)²+(1+3)²+(1+0)²)=√(16+16+1)=√33
ВД=√((0+2)²+(2+4)²+(0-1)²)=√(4+36+1)=√41
Т.к. периметр равен 1, а стороны ромба равны, то одна сторона 1/4=0,25
Если дигонали относятся как 3 к 4, если рассматривать прямоугольный треугольник образованный: стороной ромба, половиной одной диагонали, половиной другой диагонали и обозначить одну часть диагонали за х, то в этом треугольнике гипотенуза равна стороне ромба и равна 0,25, больший катет равен 2х ( половина от большей диагонали), а меньший катет равен 1,5х.
По теореме пифагора: (1,5х) в квадрате + (2х) в квадрате = (0,25) в квадрате.
2,25 хквадрат + 4 хквадрат = 0,0625
6,25 хквадрат = 0,0625
хквадрат = 0,01
х = 0,1
Получаем, что одна часть диагонали равна 0,1.
В большей диагонали таких частей 4, следовательно она равна 0,1*4=0,4. В меньшей - 0,1*3=0,3.
Ответ: 0,4 и 0,3.