Т.к. периметр равен 1, а стороны ромба равны, то одна сторона 1/4=0,25 Если дигонали относятся как 3 к 4, если рассматривать прямоугольный треугольник образованный: стороной ромба, половиной одной диагонали, половиной другой диагонали и обозначить одну часть диагонали за х, то в этом треугольнике гипотенуза равна стороне ромба и равна 0,25, больший катет равен 2х ( половина от большей диагонали), а меньший катет равен 1,5х. По теореме пифагора: (1,5х) в квадрате + (2х) в квадрате = (0,25) в квадрате. 2,25 хквадрат + 4 хквадрат = 0,0625 6,25 хквадрат = 0,0625 хквадрат = 0,01 х = 0,1 Получаем, что одна часть диагонали равна 0,1. В большей диагонали таких частей 4, следовательно она равна 0,1*4=0,4. В меньшей - 0,1*3=0,3. Ответ: 0,4 и 0,3.
AA1=BB1=CC1-DD1=5 A1B1=AB-CD-C1D1= корень из 110 B1C1=BC=AD=A1D1=3- его ребра. Длина диагонали: BD1=AC1=CA1=DB1= КОРЕНЬ ИЗ AB*2+BC*+AA*= корень из 25+110+9=144 =12
Пусть точка А имеет координаты А(x1; y1) Т.к. М - середина отрезка АВ, то она будет иметь координаты М((х1 - 7)/2; ((у1 - 5)/2)) Известно, что точка М имеет координаты М(-3; -4). Тогда приравниваем координаты точки М с неизвестными х1 и у1: (х1 - 7)/2 = -3 (у1 - 5)/2 = -4 х1 - 7 = -6 у1 - 5 = -8 х1 = 1 у1 = -3 Тогда точка А будет иметь координаты А(1; -3).
Пусть точка С имеет координаты С(х2; у2) По такому же принципу составлчпм два уравнения: (х2 + 1)/2 = -4 (у2 - 3)/2 = -2 х2 + 1 = -8 у2 - 3 = -4 х2 = -9 у2 = -1 Значит, точка С будет иметь координаты С(-9; -1).
Теперь находим координаты точки L(х3; у3) х3 = (-7 -9)/2. у3 = (-1 - 5)/2 х3 = -8 у3 = -3 Значит, точка L имеет координаты L(-8; -3)
Длина отрезка AL = √(1 + 8)² + (-3 + 3)² = √9² + = √81 = 9.