<span>Ответ: 1) AC=KP, на основании того, что данные прямоугольные треугольники равны по второму признаку равенства прямоугольных треугольников: </span>если катет и прилежащий острый угол одного треугольника соответственно равны катету и прилежащему острому углу другого треугольника, то такие прямоугольные треугольники равны.
По условию: ∠A=∠К=90°, острые углы ∠B=∠М<span>=15</span>°<span>, прилежащие катеты BC=МР=10</span>⇒
ΔАВС=ΔМКР, против равных углов лежат равные стороны⇒
AC=KP
Проведем высоту в этом равнобедренном треугольнике, назовем ее ВН.
Тогда у нас получилось 2 прямоугольных треугольника АВН и ВНС
ВН является не только высотой в треуг.АВС ,но и медианой, которая делит сторону АС пополам.
АВ=ВС=10 см, основание треугольника АС=12, тогда АН=НС=12/2=6 см
В прямоугольном треугольнике АВН по теореме Пифагора найдем ВН
АВ²=ВН²+АН²
10²=ВН²+6²
100=ВН²+36
ВН²=100-36=64
ВН=√64=8
S= 1/2 *8* 12=48 см²
ОТВЕТ площадь нашего искомого треугольника 48 см²
В самом вверху смотри, может поможет)
Пусть точка К - точка касания касательной с окружностью.
<К=90° => получили прямоугольный треугольник АКО => чтобы найти АК будем использовать теорему Пифагора.
АК^2=АО^2-КО^2
АК^2=15^2-9^2=225-81=144=12^2
АК=12
Ответ: 12