Сначала ужно написать уравнение прямой, проходящей через точки А и В. Найти середину отрезка АВ. Через эту точку провести прямую, перепендикулярную АВ.
Все точки этой прямой будут находится на равном расстоянии от точек А и В.
1) Напишем уравнение прямой, проходящей чнрез точки А и В;
у=к*х+в;
2=к*4+в;
в=2-4к (1);
7=к*6+в;
в=7-6к (2);
2-4к=7-6к;
2к=5;
к=2,5;
в=7-6*2,5=-8;
у=2,5х-8;
угловой коэффициент равен к=2,5;
2) координаты точки середины отрезка АВ равны ((4+6)/2; (2+7)/2)=(5;4,5);
3) угловые коэффициенты перпендикулярных прямых обратны по величине и противоположны по знаку. Угловой коэффициент искомой прямой равен к1=-1/к=-1/2,5=-0,4;
Уравнение прямой проходящей через точку (5;4,5) перпендикулярно к прямой у=2,5х-8:
4,5=5*(-0,4)+в;
в=4,5+2=6,5;
у=-0,4х+6,5;
0,4х+у-6,5=0;
..........................
тогда h=a=1/2b
распишем формулу площади:S=1/2*h*(a+b)
в нашей задаче:S=1/2h(h+2h)=3/2h*h=54
находим h*h=36,отсюда получаем,h=6
ответ:высота равна 6 см
<-это угол
так как ABCD-ромб ( все его стороны равны так как ромб так же является параллелограмом),то для нахождения сторон нужно периметр разделить на 4:
24/4=6см .все углы ромба в сумме равны 360°,<ВАD=<BCD(так как ром это параллелограмм а у него противолежащие углы равны),<ABC=<BCD=(360°-120°)/2=240°/2=120°.
диагонали ромба являются биссекрисами углов значит <АBD=<АDB=60°(180°-60°/2)
так как все углы треугольника <ABC равны ,то этот треугольник равносторонний и его стороны равны 6 см.
средняя линия треугольника равна половине его основания,значит МК=6/2=3см
ответ:3см.
Прикрепляю листочек............................