Середина отрезка
O = 1/2*(A + B)
O = 1/2*((-1;0) + (5;0.2)) = 1/2*(-1 + 5; 0 + 0.2) = 1/2*(4; 0.2) = (2; 0.1)
Другие, то есть два угла при основании будут равны по 40 градусов, потому что в сумме 40+40 = 80.
А сумма углов в треугольнике равна 180 градусов.
2,4 дм = 24 см
<span>Находится по теореме Пифагора:
</span>
см диагональ
<u>Рисунок во вложении</u>.
Для того, чтобы найти площадь осевого сечения цилиндра нам нужно знать высоту цилиндра и диаметр его оснований.
Так как отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, то этим отрезком, радиусом и осью цилиндра ( высотой его) образуется <u>равнобедренный треугольник.</u> следовательно, высота цилиндра равна радиусу его оснований.
Можем ли вычислить величину этого радиуса? Можем.
Соединим центр окружности с концами хорды и получим<em><u> равносторонний треугольник</u></em>, т.к. по условию задачи хорда отсекает от окружности дугу в 60°. <u>Высота этого равностороннего треугольника</u> равна расстоянию от центра основания до хорды и по условию задачи равна 2√3.
Высота равностороннего треугольника равна (а√3):2, где а - сторона этого треугольника.
(а√3):2=2√3см.
Найдем из этого уравнения сторону а( <u>радиус</u> основания).
а√3 =2*2√3
а =4см
Поскольку высота цилиндра равна радиусу оснований, она равна 4см.
Диаметр оснований равен 4*2=8см
Площадь осевого сечения цилиндра D*h равна
4*8=32см²
Ответ в приложенном рисунке